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Abstract

We introduce the notion of a dice model as a framework for de-
scribing a class of probabilistic relations. We investigate the transitiv-
ity of the probabilistic relation generated by a dice model and prove
that it is a special type of cycle-transitivity that is situated bet-
ween moderate stochastic transitivity or product-transitivity on the
one side, and ÃLukasiewicz-transitivity on the other side. Finally, it
is shown that any probabilistic relation with rational elements on a
three-dimensional space of alternatives which possesses this particu-
lar type of cycle-transitivity, can be represented by a dice model. The
same does not hold in higher dimensions.

Keywords: dice model, probabilistic relation, stochastic transitivity,
T -transitivity, utility model.
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1 Introduction

Two players play the following game. Player 1 erases the spots from
the faces of three fair dice and writes one number from 1, 2, . . ., 18 to
each face. Each of them risks e 1, chooses one dice, they throw the
dice, and the one having the bigger number on top of his dice wins the
e 2. Since Player 1 puts the numbers to the dice it seems fair to let
Player 2 choose his dice first. Of course, Player 2 tries to choose the
best dice. Despite this, Player 1 wins in the long run.

Such an example for distributing the numbers over the three dice A,B,C is

A = {1, 3, 4, 15, 16, 17}, B = {2, 10, 11, 12, 13, 14}, C = {5, 6, 7, 8, 9, 18}.
Denoting by P (X, Y ) the probability that dice X wins from dice Y , we have
P (A,B) = 20/36, P (B, C) = 25/36, P (C, A) = 21/36. We say that dice
X is strictly better than dice Y (notation: X Â Y ) if P (X,Y ) > 1/2,
which reflects that dice X wins from dice Y in the long run. In the above
example, it holds that A Â B, B Â C and C Â A, which means that for
any dice A, B or C, one of the remaining dice is always strictly better. In
this case, the relation ‘better than’ is not transitive and forms a cycle. The
occurence of cycles has been observed in various psychological experiments
related to gambling [16], to judgment of relative pitch in music [12] and to
human preferences [14], for instance. Formulating the above observation in
another way, if we interprete the probabilities P (A,B), P (B,C) and P (C, A)
as elements of a valued relation on the space of alternatives {A,B, C}, then
this valued relation is even not weakly stochastic transitive.

The above example can be generalized in the following sense. Firstly, it
is possible to consider an arbitrary (but fixed) number m ≥ 2 of dice, each
dice being characterized by a set Ai (i = 1, 2, . . . , m) of numbers. Secondly,
each set Ai may contain ni numbers, with ni not necessarily equal to six.
In other words, we allow a dice to possess any number of faces, but do not
care whether such a dice can be materialised and therefore maintain the
dice terminology throughout this paper. Finally, we do not insist on having
mutually distinct numbers on the faces of a single dice or among different
dice.

Given a set of m generalized dice we will define the winning probabilities
for each pair of dice and the set of dice will be called a dice model for the
generated probabilistic relation. One of the main issues of the present paper
is to investigate which kind of probabilistic relations can be generated by a
dice model. To answer this question, we will first give a formal description
of the dice model and then investigate the properties of the model which
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are conceptually related to transitivity. In particular, we will show that the
dice model accounts for a specific type of transitivity, which we will call
dice-transitivity.

A basic concept in the present study is that of a probabilistic relation,
often also called a reciprocal or ipsodual relation. Probabilistic relations serve
as a popular representation of various relational preference models [3, 8, 13].

Definition 1.1 A probabilistic relation Q on a set of alternatives A is a
mapping from A2 to [0, 1] such that for all a, b it holds that:

Q(a, b) + Q(b, a) = 1 . (1)

If A is finite with cardinality m, then Q is called an m-dimensional proba-
bilistic relation.

The number Q(a, b) can, for instance, express the degree of preference of
alternative a over alternative b. Probabilistic relations can be classified on
the basis of their type of transitivity. Usually one considers as possible types
of transitivity, various kinds of stochastic and fuzzy transitivity, but recently,
also more general families of transitivity properties have been reported on [5,
6, 15].

On the other hand, various models for generating and representing prob-
abilistic relations have already been established. Well known is the util-
ity model in which to each alternative xi ∈ A a utility number ui ∈ R
is assigned and for which the generated probabilistic relations have strong
transitivity properties [15]. At the other end of the transitivity scale, we
encounter the probabilistic relations generated by the so-called multidimen-
sional model [15], which possess the weak ÃLukasiewicz-transitivity property
only.

We shall introduce a new probabilistic model (called dice model) to gen-
erate probabilistic relations. In this model, to each alternative ai ∈ A a
multiset Ai consisting of ni numbers is assigned. These multisets can be
identified with the generalized dice discussed above. In contrast to Basile [1],
our aim is not to resolve the cyclic behaviour commented on in the prologue,
but to establish an appropriate type of transitivity accounting for it. We will
show that this type of transitivity can be situated between that of the utility
model and that of the multidimensional model.

2 The dice model

As stated before, the concept of a multiset is very well suited to formally
describe a generalized dice. We recall that a multiset is a set with possibly
repeated elements.
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Definition 2.1 Let Vn denote the class of multisets of cardinality n with
strictly positive integer elements. Unless otherwise stated, the elements of
a multiset {a1, a2, . . . , an} ∈ Vn are listed in non-descending order, i.e.:
a1 ≤ a2 ≤ · · · ≤ an. Let V =

⋃∞
i=1 Vi denote the class of finite multi-

sets with strictly positive integer elements. We will also use the notation
Vn1,n2,...,nm = Vn1 ×Vn2 × . . .×Vnm to denote the family of ordered collections
(M1,M2, . . . ,Mm) of m multisets Mi ∈ Vni

. The multiset M =
⋃m

i=1 Mi is
called the collective multiset of the given collection. Clearly, different collec-
tions may possess the same collective multiset.

For our purposes, we will frequently make use of a special type of collec-
tion, called standard collection.

Definition 2.2 A standard collection is a collection (M1,M2, . . . , Mm) ∈
Vn1,n2,...,nm for which the collective multiset M equals N[1, n1 +n2 + · · ·+nm].

N[a, b] denotes the set of integers in the interval [a, b]. Definition 2.2 implies
that all elements of the collective multiset M are different and that every
integer in M occurs once in just one of the composing multisets Mi. In fact,
the multisets Mi of a standard collection are ordinary sets that constitute a
partition of the ordinary set M .

We now indicate how we can unambiguously associate a probabilistic
relation to a given collection of multisets.

Definition 2.3 For any two multisets A ∈ Vn1 and B ∈ Vn2 we define:

P (A,B) =
1

n1n2

(#{(a, b) ∈ A×B | a > b}) , (2)

I(A,B) =
1

n1n2

(#{(a, b) ∈ A×B | a = b}) , (3)

D(A,B) = P (A,B) +
1

2
I(A,B) . (4)

The valued relation D on V defined by (4) clearly is a probabilistic relation.
It should be noted that, given a couple (A,B) of multisets, P (A,B) (resp.

I(A,B)) is the probability that an element drawn at random (with a uni-
form distribution) from the multiset A is strictly greater than (resp. equal
to) an element drawn at random from the multiset B. If, for example, A is
an ordinary integer set of cardinality n, then according to (2)–(4), we obtain
P (A,A) = (n − 1)/2n and I(A,A) = 1/n. In the context of fuzzy prefer-
ence modelling [4], a strict preference relation P is assumed to be irreflexive
(P (A,A) = 0) and an indifference relation to be reflexive (I(A,A) = 1). The
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valued relations introduced above, despite their probabilistic interpretation,
do not fit into the framework of fuzzy preference structures. However, the
probabilistic relation D can also be written as:

D(A,B) = P ′(A,B) +
1

2
I ′(A,B) ,

where P ′ and I ′ are defined by:

P ′(A,B) = max(P (A,B)− P (B, A), 0) ,

I ′(A,B) = 1− | P (A,B)− P (B, A) | .

Now, P ′ (resp. I ′) can be interpreted as a strict preference (resp. indifference)
relation. In particular, for an ordinary integer set A of any cardinality n, we
obtain P ′(A,A) = 0 and I ′(A,A) = 1.

Definition 2.4 A collection (M1,M2, . . . , Mm) ∈ Vn1,n2,...,nm is called a dice
model for an m-dimensional probabilistic relation Q = [qij], if it holds that

qij = D(Mi,Mj) .

Q is called the probabilistic relation generated by the dice model.

A finite collection (M1,M2, . . . , Mm) of multisets, together with the associ-
ated m-dimensional probabilistic relation Q, can be represented by a weighted
directed graph with m nodes. Node i corresponds to multiset Mi. Between
every pair of nodes a directed arc is drawn and its direction is arbitrarily
chosen. If an arc is drawn from node i to node j, then it carries the weight
qij. It may be replaced by an arc from node j to node i carrying the weight
qji = 1− qij. Since qii = 1/2 for all i, for the sake of simplicity, loops at the
graph nodes are not drawn. Figure 1 illustrates the graphical representation
of the probabilistic relation generated by a dice model.

3 Standardization of a dice model

From the definitions introduced in the previous section it is clear that many
different collections of m multisets can generate the same probabilistic rela-
tion. The question arises whether for a probabilistic relation generated by
a collection of multisets, there always exists at least one standard collection
that generates the same probabilistic relation. An affirmative answer to this
question is obtained in this section.
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(7; 7; 8; 8) (4; 6; 6; 6)
(3; 4; 4; 5) 34 18121 1 34(2; 7; 8; 9)

Figure 1: A 4-node graph representing the probabilistic relation generated by the
multisets {3, 4, 4, 5}, {2, 7, 8, 9}, {4, 6, 6, 6}, {7, 7, 8, 8}.

Lemma 3.1 Any collection C = (M1,M2, . . . ,Mm) ∈ Vn1,n2,...,nm, with collec-
tive multiset M , can be transformed into a collection C ′ = (M ′

1,M
′
2, . . . , M

′
m)

∈ Vn1,n2,...,nm, with collective multiset M ′, so that:

1. C and C ′ generate the same probabilistic relation ;
2. 1 ∈ M ′ ;
3. v ∈ M ′ ⇒ v ∈ N[1, n1 + n2 + . . . + nm] ;
4. v occurs n times in M ′ ⇒ M ′ ∩ N[v + 1, v + n− 1] = ∅ .

(5)

Proof: The proposed transformation of C into C ′ is essentially the unique
order-preserving renumbering of the elements of M satisfying conditions 2,
3 and 4.

Example 3.1: To illustrate this transformation, let us consider the following
example. The collection (M1,M2,M3) with





M1 = {2, 2, 11, 14, 15}
M2 = {2, 3, 3, 5, 12}
M3 = {8, 8, 8, 9, 10}

is transformed into the collection (M ′
1,M

′
2,M

′
3) with





M ′
1 = {1, 1, 12, 14, 15}

M ′
2 = {1, 4, 4, 6, 13}

M ′
3 = {7, 7, 7, 10, 11}

One can easily verify that D(M1,M2) = D(M ′
1,M

′
2) = 3/5, D(M2,M3) =

D(M ′
2,M

′
3) = 1/5 and D(M3,M1) = D(M ′

3,M
′
1) = 2/5.

Theorem 3.1 Any collection C = (M1, M2, . . . , Mm) ∈ Vn1,n2,...,nm can be
transformed into a standard collection C̃ = (M̃1, M̃2, . . . , M̃m) ∈ V2n1,2n2,...,2nm

that generates the same probabilistic relation.
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Proof: We first transform C into C ′, using Lemma 3.1. Next, we will trans-
form the collective multiset M ′ of the collection C ′ into a multiset M̃ corre-
sponding to a standard collection C̃ ∈ V2n1,2n2,...,2nm that generates the same
probabilistic relation.

For each distinct number ` in the multisets of C ′ (each distinct number
in M ′) we do the following. If ` occurs only once in M ′, then we replace it
by 2`− 1 and 2`. So, the multiset M̃i of C̃ that corresponds to the multiset
M ′

i of C ′ containing `, contains 2`−1 and 2` instead. If the number ` occurs
twice in M ′, we replace one ` by 2`− 1 and 2` + 2 and the other ` by 2` and
2` + 1. Generally speaking, if ` occurs t times in M ′, then we replace the
jth ` by 2` + j − 2 and 2` + 2t− j − 1. Note that the t equal numbers ` are
arbitrarily ordered, each ordering possibly giving rise to a different standard
collection.

We will now prove that C ′ and C̃ generate the same probabilistic relation.
As a first step we note that, thanks to the fourth property in (5), for any
two distinct numbers a > b from M ′ that are respectively transformed into
the pairs of numbers a1, a2 and b1, b2 contained in M̃ , it holds that both a1

and a2 are strictly greater than b1 and b2. Therefore the contribution to
D(M ′

i ,M
′
j) originating from different numbers in M ′

i and M ′
j (the P (M ′

i , M
′
j)

part) equals the contribution to D(M̃i, M̃j) originating from the transformed
pairs of those numbers in M̃i and M̃j. It remains to investigate whether
the I(M ′

i ,M
′
j) contribution to D(M ′

i ,M
′
j) is reproduced by the transformed

numbers (which are mutually different). To that aim let us consider the case
where ` occurs in at most 2 multisets, say M ′

i and M ′
j, k times in M ′

i and
t−k times in M ′

j with k ∈ {0, 1, . . . , t} and t > 1. Without loss of generality
we can assume that no other number but ` occurs in M ′

i and M ′
j and that

` = 1.
According to the proposed transformation, M̃i contains the 2k numbers

j1, 2t−j1+1, j2, 2t−j2+1, . . ., jk, 2t−jk+1, with 1 ≤ j1 < j2 < · · · < jk ≤ t,
whereas M̃j contains the remaining numbers in N[1, 2t]. Counting the number
s of couples (a, b) ∈ M̃i × M̃j for which a > b, we obtain in increasing order
of a:

s = (j1 − 1) + (j2 − 2) + · · ·+ (jk − k) +

(2t− jk − k) + (2t− jk−1 − k − 1) + · · ·+ (2t− j1 − 2k + 1)

= 2k(t− k) .

Hence, D(M̃i, M̃j) = 2k(t−k)/(4k(t−k)) = 1/2 which is equal to D(M ′
i ,M

′
j).

Finally, the generalization to the case where the same number ` occurs in
three or more multisets is straightforward.
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Example: Continuing the same example as before, the collection (M ′
1,M

′
2,M

′
3)

can for instance be transformed into the collection (M̃1, M̃2, M̃3) with




M̃1 = {2, 3, 4, 5, 23, 24, 27, 28, 29, 30}
M̃2 = {1, 6, 7, 8, 9, 10, 11, 12, 25, 26}
M̃3 = {13, 14, 15, 16, 17, 18, 19, 20, 21, 22}

One can easily verify that D(M ′
1,M

′
2) = D(M̃1, M̃2) = 3/5, D(M ′

2,M
′
3) =

D(M̃2, M̃3) = 1/5 and D(M ′
3,M

′
1) = D(M̃3, M̃1) = 2/5.

Theorem 3.1 enables us to focus without loss of generality solely upon stan-
dard collections when investigating the transitivity properties of the proba-
bilistic relations generated by collections of multisets. We will call standard
collections ∈ V 3 (resp. ∈ V 4) standard triplets (resp. standard quartets).
Note that for standard collections it holds that D(Mi,Mj) = P (Mi,Mj) for
all i 6= j.

4 Cycle-transitivity

Usually, in the context of probabilistic relations, two types of transitivity are
investigated: stochastic transitivity [8, 11] and T -transitivity [9], with T a
triangular norm. A t-norm T is an increasing, commutative and associative
binary operation on [0, 1] with neutral element 1 [10].

Definition 4.1 Let g be an increasing [1/2, 1]2 → [0, 1] mapping. A proba-
bilistic relation Q on A is called g-stochastic transitive if for any (a, b, c) ∈ A3

it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) . (6)

This definition includes many well-known types of stochastic transitivity. In-
deed, g-stochastic transitivity is known as strong stochastic transitivity when
g = max, moderate stochastic transitivity when g = min, weak stochas-
tic transitivity when g = 1/2, λ-transitivity, with λ ∈ [0, 1], when g =
λ max +(1− λ) min [2, 11].

It is clear that strong stochastic transitivity implies λ-transitivity, which
implies moderate stochastic transitivity, which, in turn, implies weak stochas-
tic transitivity.

Definition 4.2 A valued relation R on A is called T -transitive w.r.t. a t-
norm T if for any (a, b, c) ∈ A3 it holds that:

T (R(a, b), R(b, c)) ≤ R(a, c) . (7)
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Prototypical examples of continuous t-norms are the minimum opera-
tor TM (TM(x, y) = min(x, y)), the algebraic product TP (TP(x, y) = x y)
and the ÃLukasiewicz t-norm TL (TL(x, y) = max(x + y − 1, 0)). Clearly,
TM-transitivity (also called min-transitivity) implies TP-transitivity (also
called product-transitivity) and the latter implies TL-transitivity (also called
ÃLukasiewicz-transitivity).

It has been shown by the present authors that for probabilistic relations
stochastic transitivity and T -transitivity are only very special cases of a more
general type of transitivity, called cycle-transitivity [6]. For a probabilistic re-
lation Q on A, we write qab := Q(a, b). In the framework of cycle-transitivity,
the quantities αabc = min(qab, qbc, qca), βabc = median(qab, qbc, qca) and γabc =
max(qab, qbc, qca) are defined for all (a, b, c). Obviously, αabc ≤ βabc ≤ γabc.
Also, the notation ∆ = {(x, y, z) ∈ [0, 1]3 | x ≤ y ≤ z} is used. Remark that
any three nodes can always be labelled a, b, c such that either

αabc = qab, βabc = qbc, γabc = qca , (8)

or
αabc = qab, βabc = qca, γabc = qbc . (9)

Definition 4.3 [6] A function U : ∆ → R is called an upper bound function
if it satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;

(ii) for any (α, β, γ) ∈ ∆:

U(α, β, γ) + U(1− γ, 1− β, 1− α) ≥ 1 .

The class of upper bound functions is denoted U .

The function L : ∆ → R defined by

L(α, β, γ) = 1− U(1− γ, 1− β, 1− α) (10)

is called the dual lower bound function of a given upper bound function U .

Definition 4.4 [6] A probabilistic relation Q on A is called cycle-transitive
w.r.t. an upper bound function U , if for any (a, b, c) ∈ A3 it holds that:

L(αabc, βabc, γabc) ≤ αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) , (11)

where L is the dual lower bound function of U .
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Due to the built-in duality, it holds that if (11) is true for some (a, b, c),
then it is also true for any permutation of (a, b, c). Alternatively, due to
the same duality, it is also sufficient to verify the right-hand inequality (or
equivalently, the left-hand inequality) for two permutations of any (a, b, c)
that are not cyclic permutations of one another, e.g. (a, b, c) and (c, b, a).

This definition implies that if a probabilistic relation Q is cycle-transitive
w.r.t. U1 and U1(a, b, c) ≤ U2(a, b, c) for all (a, b, c) ∈ ∆, then Q is cycle-
transitive w.r.t. U2.

In particular, TM-transitivity corresponds to U = UM with UM(α, β, γ) =
β and is equivalent to αabc +γabc = 1. TP-transitivity corresponds to U = UP

with UP(α, β, γ) = α + β − αβ, and TL-transitivity corresponds to U =
UL with UL(α, β, γ) = 1. Furthermore, strong (moderate, weak) stochastic
transitivity corresponds to U = Uss (U = Ums, U = Uws) with Uss(α, β, γ) =
β, Ums(α, β, γ) = γ and Uws(α, β, γ) = β + γ − 1/2 when β ≥ 1/2 and
α 6= 1/2, Uss(α, β, γ) = Ums(α, β, γ) = Uws(α, β, γ) = 2 when β < 1/2 and
Uss(α, β, γ) = Ums(α, β, γ) = Uws(α, β, γ) = 1/2 when α = 1/2 [5, 6]. It
follows that TM-transitivity implies strong stochastic transitivity and that
moderate stochastic transitivity implies TL-transitivity. Yet another type of
cycle-transitivity is that shown by the utility model [15], for which U = Uu

with Uu(α, β, γ) = max(β, 1/2).

5 Transitivity of the dice model

From here on we will use (i, j, k) instead of (a, b, c) as specifiers of a cycle,
since we only consider a finite, and therefore countable, number of dice. In
this section, we will show by means of the concept of cycle-transitivity that
the type of transitivity exhibited by a probabilistic relation Q generated by
a dice model, can be situated between TP-transitivity and TL-transitivity.
This is expressed in the next four theorems.

Theorem 5.1 Not all probabilistic relations generated by a dice model are
TP-transitive.

Proof: The probabilistic relation generated by Example 3.1 is not TP-transi-
tive since it holds that D(M2,M1) = 2/5, D(M1,M3) = 3/5, D(M2,M3) =
1/5 and 2/5 · 3/5 > 1/5.
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Since TM-transitivity implies TP-transitivity, clearly not all probabilistic re-
lations generated by a dice model are TM-transitive.

Theorem 5.2 Every probabilistic relation generated by a dice model is TL-
transitive.

Proof: Firstly, we note that in view of Theorem 3.1 the proof must only be
given for an arbitrary standard collection (M1,M2, . . . , Mm) ∈ Vn1,n2,...,nm .
Furthermore, we only need to show that the elements of the generated prob-
abilistic relation Q = [qij] satify the double inequality

0 ≤ αijk + βijk + γijk − 1 ≤ 1

for all i < j < k. Let us define

xijk =
1

ninjnk

# {(xi, xj, xk) ∈ Mi ×Mj ×Mk | xi > xj > xk} ,

then, since the collection is standard, it follows that

xijk + xikj + xjik + xjki + xkij + xkji = 1 .

On the other hand, it holds that qij = xijk +xikj +xkij, qjk = xijk +xjik +xjki,
and qki = xkij + xkji + xjki. Consequently,

αijk + βijk + γijk − 1 = qij + qjk + qki − 1 = xijk + xjki + xkij ,

and the value of the last expression always lies in [0, 1], which completes the
proof.

The reverse statement is not always true, as is illustrated by:

Theorem 5.3 Not all TL-transitive probabilistic relations can be generated
by a dice model.

Proof: We will indicate a family of three-dimensional TL-transitive proba-
bilistic relations that cannot be generated by a triplet of multisets. Indeed,
let us consider the three-dimensional probabilistic relation Q with rational
elements satisfying q12 6= 1, q23 6= 1, q31 6= 1 and q12 + q23 + q31 = 2. Clearly
such relations exist and are TL-transitive. Suppose that there exists a stan-
dard triplet (M1,M2,M3) with M1 ∈ Vn1 , M2 ∈ Vn2 and M3 ∈ Vn3 , such
that

q12 + q23 + q31 = 2 .
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Let us first consider the case where the largest number n = n1+n2+n3 is not
in a multiset of cardinality one. Without loss of generality we can assume that
M1 contains the number n. Let us consider the standard triplet (M ′

1,M
′
2,M

′
3),

with corresponding elements q′12, q′23 and q′31 of the probabilistic relation
Q′, that is obtained from (M1,M2, M3) after removing n from M1. Hence
M ′

1 ∈ Vn1−1 and we have in particular:

q′12 =
n1n2q12 − n2

(n1 − 1)n2

=
n1q12 − 1

n1 − 1
= q12 +

q12 − 1

n1 − 1
,

q′23 = q23 ,

q′31 =
n3n1q31

n3(n1 − 1)
=

n1q31

n1 − 1
= q31 +

q31

n1 − 1
.

It follows that

q′12 + q′23 + q′31 = q12 + q23 + q31 +
q12 + q31 − 1

n1 − 1

= 2 +
1− q23

n1 − 1
> 2 ,

which is a contradiction since by Theorem 5.2 the above sum should not
exceed 2 for a standard triplet. Therefore, (M1,M2,M3) is not a standard
triplet.

There remains the case of a standard triplet with n contained in a mul-
tiset of cardinality 1. Suppose n1 = 1 and M1 = {n} with n = 1 + n2 + n3.
It follows that q31 = 0 and q12 = 1, but the latter equality is clearly not in
agreement with the basic assumptions. Finally, since Q cannot be generated
by a standard triplet, due to Theorem 3.1, it cannot be generated by an
arbitrary triplet. This completes the proof.

In the case of TP-transitive probabilistic relations, we can give conditions
under which their generation by means of a dice model is always possible.

Theorem 5.4 Every three-dimensional TP-transitive probabilistic relation Q
with rational elements can be generated by a dice model.

Proof: Consider a three-dimensional probabilistic relation Q with rational
elements qij. According to the discussion preceding Definition 4.3, we assume
that the elements of Q can be relabelled such that (8) holds, or

q12 = α123, q23 = β123, q31 = γ123.

The proof for the case where (9) holds is similar and will not be given ex-
plicitly here. Since α123, β123, γ123 are rational numbers, they have a least
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common denominator which we will call n. Furthermore, let p = nα123,
q = nβ123 and r = n γ123. In this notation, TP-transitivity means that the
double inequality

qr ≤ n(p + q + r − n) ≤ n(p + q)− pq

holds.
Since qr ≤ nq ≤ n(p + q) − pq, we can distinguish two cases for the

construction of the standard triplet. The first case is the one where p, q, r
satisfy:

qr ≤ n(p + q + r − n) ≤ nq ,

or, equivalently:
(n− q)(n− r) ≤ np ≤ n(n− r) . (12)

Then we define:

M1 = N[1, r] ∪ E ,

M2 = N[r + 1, n− q + r] ∪ Ec , (13)

M3 = N[n− q + r + 1, 2n− q + r] ,

with E an (n − r)-dimensional subset of N[2n − q + r + 1, 3n] and Ec =
N[2n − q + r + 1, 3n] \ E. Ec is q-dimensional. From (13) it is immediately
clear that D(M2, M3) = nq/n2 = β123 and D(M3,M1) = nr/n2 = γ123.
Depending upon the choice of E we obtain that D(M1,M2) can vary in steps
of 1/n2 from (n−q)(n−r)/n2 when E = N[2n−q+r+1, 3n−q] to n(n−r)/n2

when E = N[2n + r + 1, 3n]. In particular, for all p satisfying (12) at least
one subset E can be found for which D(M1,M2) = np/n2 = α123.

The second case is the one where p, q, r satisfy:

nq ≤ n(p + q + r − n) ≤ n(p + q)− pq ,

or, equivalently:
n(n− p) ≤ nr ≤ n2 − pq . (14)

We define:

M1 = N[1, n− p] ∪ Ec ,

M2 = N[n− p + q + 1, 2n− p + q] (15)

M3 = N[n− p + 1, n− p + q] ∪ E ,

where now E is an (n − q)-dimensional subset of N[2n − p + q + 1, 3n] and
Ec = N[2n − p + q + 1, 3n] \ E is p-dimensional. From (15) it is immedi-
ately clear that D(M1,M2) = np/n2 = α123 and D(M2, M3) = nq/n2 = β123.
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Depending upon the choice of E we obtain that D(M3, M1) can vary from
n(n−p)/n2 when E = N[2n−p+ q +1, 3n−p] to (n(n−p)+ (n− q)p)/n2 =
n2 − pq when E = N[2n + q + 1, 3n]. Hence for all r satisfying (14) at least
one subset E can be found for which D(M3,M1) = nr/n2 = γ123.

Since TM-transitivity implies TP-transitivity, the construction in Theo-
rem 5.4 can be used to establish a standard triplet that generates a given
three-dimensional TM-transitive probabilistic relation with rational elements.
However, this construction can be simplified in the following way, taking into
account that with the same notations as before, TM-transitivity means that
p + r = n. For the case that (8) holds we can choose

M1 = N[1, r] ∪ N[r + 2n + 1, 3n] ,

M2 = N[r + 1, r + n− q] ∪ N[r + 2n− q + 1, r + 2n] ,

M3 = N[r + n− q + 1, r + 2n− q] ,

which immediately leads to q12 = D(M1,M2) = α123, q23 = D(M2,M3) =
β123 and q31 = D(M3,M1) = γ123.

We now want to characterize more precisely the transitivity of the prob-
abilistic relations generated by a dice model and therefore have reached the
point where the main results of this paper can be formulated.

Theorem 5.5 Every probabilistic relation generated by a dice model is cycle-
transitive w.r.t. the upper bound function UD defined by:

UD(α, β, γ) = β + γ − βγ . (16)

Cycle-transitivity w.r.t. the upper bound function UD will be called dice-
transitivity.

Proof: We are not able to formulate a direct proof in the style of the one
of Theorem 5.2. Instead, we will establish a proof by induction. In view of
Theorem 3.1, we can restrict the proof to probabilistic relations Q generated
by a standard triplet. Furthermore, we only give the proof for the case where
the 123-loop is of type (8). The proof for a 123-loop of type (9) is completely
similar and is left to the reader. In the present case we have that q12 =
D(M1,M2) = α123, q23 = D(M2, M3) = β123 and q31 = D(M3,M1) = γ123.
For the sake of simplicity, we drop the subscript 123 from here onwards.

By induction, suppose there exists a standard triplet (M1,M2,M3) with
M1 ∈ Vn1 , M2 ∈ Vn2 , M3 ∈ Vn3 that generates a dice-transitive probabilistic
relation, i.e.

αβ ≤ α + β + γ − 1 ≤ β + γ − βγ , (17)
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where the lower bound is found by 1−UD(1−γ, 1−β, 1−α) = αβ. The largest
number occurring in one of the multisets of the triplet equals n1 + n2 + n3.

We now construct a new standard triplet by attributing to one of the
three multisets the additional number n = n1 + n2 + n3 + 1. We therefore
have to distinguish three cases. We systematically use accents to denote
quantities related to the newly constructed standard triplet.

Case 1: M1 is attributed the additional number n. We obtain:

n′1 = n1 + 1 , n′2 = n2 , n′3 = n3 ,

q′12 =
n1n2α + n2

(n1 + 1)n2

=
n1α + 1

n1 + 1
,

q′23 = β ,

q′31 =
n1γ

n1 + 1
,

from which it follows that:

q′12 + q′23 + q′31 − 1 =
n1

n1 + 1
(α + β + γ − 1) +

β

n1 + 1
. (18)

Using (17) we obtain from (18) that:

α′ + β′ + γ′ − 1 ≤ n1

n1 + 1
[β + (1− β)γ)] +

β

n1 + 1

= β +
n1

n1 + 1
γ(1− β)

= q′23 + q′31(1− q′23)

= 1− (1− q′23)(1− q′31)

≤ 1− (1− β′)(1− γ′) .

Case 2: M2 is attributed the additional number n. We obtain:

n′1 = n1 , n′2 = n2 + 1 , n′3 = n3 ,

q′12 =
n2α

n2 + 1
,

q′23 =
n2n3β + n3

(n2 + 1)n3

=
n2β + 1

n2 + 1
= β +

1− β

n2 + 1
≥ β ,

q′31 = γ ,

from which it follows that:

q′12 + q′23 + q′31 − 1 =
n2

n2 + 1
(α + β + γ − 1) +

γ

n2 + 1
. (19)
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Using (17) we obtain from (19) that:

α′ + β′ + γ′ − 1 ≤ n2

n2 + 1
[γ + (1− γ)β)] +

γ

n2 + 1

= γ +
n2

n2 + 1
β(1− γ)

≤ 1− (1− β)(1− γ)

≤ 1− (1− q′23)(1− q′31)

≤ 1− (1− β′)(1− γ′) .

Case 3: M3 is attributed the additional number n. We obtain:

n′1 = n1 , n′2 = n2 , n′3 = n3 + 1 ,

q′12 = α ,

q′23 =
n3β

n3 + 1
,

q′31 =
n3γ + 1

n3 + 1
= γ +

1− γ

n3 + 1
≥ γ ,

from which it follows that:

q′12 + q′23 + q′31 − 1 =
n3

n3 + 1
(α + β + γ − 1) +

α

n3 + 1
. (20)

Using (17) we obtain from (20) that:

α′ + β′ + γ′ − 1 ≤ n3

n3 + 1
[1− (1− β)(1− γ)] +

α

n3 + 1

=
n3

n3 + 1
− n3

n3 + 1
(1− γ) +

n3β

n3 + 1
(1− γ) +

α

n3 + 1

=
n3

n3 + 1
+ (

1

n3 + 1
− n3 + 1

n3 + 1
)(1− γ) + q′23(1− γ) +

α

n3 + 1

= 1− (1− q′23)(1− γ) +
α− γ

n3 + 1

≤ 1− (1− q′23)(1− q′31)

≤ 1− (1− β′)(1− γ′) .

Note that the new 123-loop with weights q′12, q′23, q′31 is not necessarily of
type (8).

In the three cases, we have reproduced the required upper bound for
α′ + β′ + γ′ − 1, but the proof that the new standard triplet generates a
dice-transitive relation is not yet complete. Indeed, the upper bound condi-
tion must still be verified for the reverse loop-direction. However, since we

16



can arbitrarily give names to the multisets, we can formally interchange the
names of M2 and M3 in the above proof in order to obtain the proof for the
reverse loop, which is also of type (8).

Finally, we still need to start the induction and therefore have to con-
sider the basic case, which according to the induction hypothesis consists of
a standard triplet where the multiset containing the highest number n is a
singleton. We need to prove that for such a triplet, inequality (17) holds
for both loop-directions. Again three cases must be considered, depending
on whether M1, M2 or M3 is the singleton containing n. In all three cases
it turns out that for both loop-directions it holds that α = 0 and γ = 1.
Therefore, it is sufficient that for both loop-directions 0 + β + 1− 1 ≤ 1, but
this inequality is indeed always satisfied.

Dice-transitivity is a weaker type of transitivity than TP-transitivity, but
is stronger than TL-transitivity. This follows from the fact that

UP(α, β, γ) = β + α(1− β) ≤ β + γ(1− β) = UD(α, β, γ) ,

and
UD(α, β, γ) = 1− (1− β)(1− γ) ≤ 1 = UL(α, β, γ) .

Similarly, since Ums ≤ UD, it also holds that moderate stochastic transitivity
implies dice-transitivity.

It is an interesting result that under the same conditions as for TP-
transitive probabilistic relations, also dice-transitive probabilistic relations
can be generated by a dice model.

Theorem 5.6 Every three-dimensional dice-transitive probabilistic relation
Q with rational elements can be generated by a dice model.

Proof: The proof closely resembles the proof of Theorem 5.4. We again
consider the case where (8) holds, so that

q12 = α123, q23 = β123, q31 = γ123.

and let n, p, q, r denote the same quantities as before. Hence, with these
notations dice-transitivity means that the double inequality

pq ≤ n(p + q + r − n) ≤ n(q + r)− qr

holds.
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Since pq ≤ nq ≤ n(q + r)− qr, we can again distinguish two cases for the
construction of the standard triplet (M1,M2,M3). The first case is the one
where p, q, r satisfy:

pq ≤ n(p + q + r − n) ≤ nq ,

or, equivalently:
(n− p)(n− q) ≤ nr ≤ n(n− p) . (21)

Then we define:

M1 = Ec ∪ N[3n− p + 1, 3n] ,

M2 = N[n− p + q + 1, 2n− p + q] , (22)

M3 = E ∪ N[2n− p + q + 1, 3n− p] ,

with E a q-dimensional subset of N[1, n− p+ q] and Ec = N[1, n− p+ q] \E.
Note that Ec is (n− p)-dimensional. From (22) it is immediately clear that
D(M1,M2) = np/n2 = α123 and D(M2,M3) = nq/n2 = β123. Depending
upon the choice of E we obtain that D(M3, M1) can vary in steps of 1/n2

from (n − p)(n − q)/n2 when E = N[1, q] to n(n − p)/n2 when E = N[n −
p + 1, n− p + q]. Hence for all r satisfying (21) at least one subset E can be
found for which D(M3,M1) = nr/n2 = γ123.

The second case is the one where p, q, r satisfy:

nq ≤ n(p + q + r − n) ≤ n(q + r)− qr ,

or, equivalently:
n(n− r) ≤ np ≤ n2 − qr . (23)

We define:

M1 = E ∪ N[2n + r + 1, 3n] ,

M2 = Ec ∪ N[2n− q + r + 1, 2n + r] , (24)

M3 = N[n− q + r + 1, 2n− q + r] ,

with E an r-dimensional subset of N[1, n−q+r] and Ec = N[1, n−q+r]\E. Ec

is (n− q)-dimensional. From (24) it immediately follows that D(M2,M3) =
nq/n2 = β123 and D(M3, M1) = nr/n2 = γ123. Depending upon the choice
of E we obtain that D(M1,M2) can vary from n(n− r)/n2 when E = N[1, r]
to (n(n− r) + r(n− q))/n2 = (n2− qr)/n2 when E = N[n− q + 1, n− q + r].
In particular, for all p satisfying (23) at least one subset E can be found for
which D(M1,M2) = np/n2 = α123.
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Note that since TP-transitivity implies dice-transitivity, a three-dimens-
ional TP-transitive probabilistic relation with rational elements can also be
generated by the standard triplets constructed in Theorem 5.6 which are in
general different from the standard triplets used in Theorem 5.4.

6 Toward higher dimensions

In [15], besides the utility model, which yields probabilistic relations with
strong transitivity properties, also the so-called multidimensional model is
discussed. Moreover, it has been shown that the probabilistic relations gen-
erated by this multidimensional model are TL-transitive, and conversely, all
TL-transitive probabilistic relations on a universe of dimension n ≤ 5 can be
generated by a multidimensional model. By analogy, as far as our model is
concerned, the question arises whether the reverse property, which has been
proven in Theorem 5.6 to hold for three-dimensional probabilistic relations
with rational elements, extends to higher-dimensional probabilistic relations.
The question must be answered in negative sense, as follows from:

Theorem 6.1 Not all four-dimensional dice-transitive probabilistic relations
can be generated by a dice model.

Proof: We will construct a set of graphs that exhibit the dice-transitivity
of the associated probabilistic relation but for which there does not exist a
standard quartet (M1,M2, M3,M4) that generates it. We will use the graph of
Figure 2, which shows explicitly that D(M1,M3) = e = 0 and D(M2,M4) =
f = 0. Obviously, it holds that a, b, c, d ∈ [0, 1].

a

b 6= 0

c

d 6= 1

X2

X4 X3

f = 0

e = 0

X1

Figure 2: Dice-transitive probabilistic relations that cannot be generated by a
dice model.

In this graph there are four subgraphs with 3 nodes. The dice-transitivity
has to hold for each subgraph. We therefore have the following four conditions
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that must hold:




0 ≤ d− a ≤ 1− a(1− d) , for triplet (M1,M2,M4)
0 ≤ d− c ≤ 1− c(1− d) , for triplet (M1,M3,M4)
0 ≤ c− b ≤ 1− b(1− c) , for triplet (M2,M4,M3)
0 ≤ a− b ≤ 1− b(1− a) , for triplet (M2,M1,M3)

which is equivalent to

{
b ≤ c ≤ d ,
b ≤ a ≤ d .

(25)

Note that these conditions can easily be satisfied. We now prove that, when
e = 0, f = 0, when the conditions (25) are fulfilled and when

b 6= 0, d 6= 1 , (26)

we have examples of graphs that are dice-transitive but which cannot be
generated by a standard quartet.

Let us assume that there does exist a standard quartet (M1,M2,M3, M4)
with these properties and let a1 = max M1 and a2 = max M2. We have two
cases. In the first case we have a1 > a2 from which it follows that b = 0. In
the second case we have a1 < a2 from which it follows that d = 1. In the
first case we used the fact that e = 0 and in the second case that f = 0.
These two cases represent all possible situations and (26) does not hold in
either case. Therefore, there exist no standard quartets that correspond to
the dice-transitive graph having the following properties:





b ≤ c ≤ d ,
b ≤ a ≤ d ,
b 6= 0 ,
d 6= 1 ,
e = 0 ,
f = 0 .

(27)

Again, the conditions (27) can easily be satisfied.

7 Conclusions

We have developed a new model for generating probabilistic relations of which
the transitivity properties can vary from strong TM-transitivity to a weak
form of cycle-transitivity situated between TP-transitivity and TL-transitivity
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and which we called dice-transitivity. A complete characterization of the m-
dimensional probabilistic relations generated by the dice model has till now
not been found for m > 3.

This new type of transitivity, in which relations that show a cyclic be-
haviour are not necessarily excluded, is confirmed as a characteristic property
when comparing distributions of independent random variables, using gen-
eralized dice models [7]. Recently, we have shown that when comparing
distributions belonging to a same parametric family, such as exponential dis-
tributions, geometric distributions, uniform distributions on intervals of fixed
length, Laplace distributions with the same variance or normal distributions
with the same variance, more specific types of cycle-transitivity are encoun-
tered [7]. It is envisaged that the exploitation of this inherent transitivity
may lead to augmented statistical procedures related to the comparison of
random variables.

Finally, the proposed model is a rich source for many interesting ques-
tions on a variety of combinatorial properties of collections of multisets. We
will report on these properties in the near future.
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and of the Hungarian State Eötvös Grant. Special thanks also goes to EU
COST Action 274 named TARSKI: “Theory and Applications of Relational
Structures as Knowledge Instruments”.

References

[1] Basile, L.: (1996), Deleting inconsistencies in nontransitive preference
relations, International Journal of Intelligent Systems 11: 267–277.

[2] Basu, K.: (1984), Fuzzy revealed preference theory, J. Econom. Theory
32: 212–227.

[3] David, H.A.: (1963), The Method of Paired Comparisons. Griffin’s Sta-
tistical Monographs & Courses, Ed. Kendall, M.G., Charles Griffin &
Co. Ltd., London.

[4] De Baets, B. and Fodor, J.: (1997), Twenty years of fuzzy preference
structures, Belgian Journal of Operations Research, Statistics and Com-
puter Science 37(1-2): 61–81.

21



[5] De Meyer, H., De Baets, B. and Jenei, S.: (2001), A generalization of
stochastic and fuzzy transitivity for probabilistic fuzzy relations, Proc.
Second EUSFLAT Conference, Leicester, UK, 261–264.

[6] De Baets, B., De Meyer, H., De Schuymer, B. and Jenei, S.: Cyclic eval-
uation of transitivity of reciprocal relations, Social Choice and Welfare,
submitted.

[7] De Schuymer, B., De Meyer, H. and De Baets, B.: (2003), A fuzzy
approach to stochastic dominance of random variables, Lecture Notes in
Computer Science 2715, to appear.

[8] Fishburn, P.C.: (1973), Binary choice probabilities: on the varieties of
stochastic transitivity, Journal of Mathematical Psychology 10: 327–352.

[9] Fodor, J. and Roubens, M.: (1994), Fuzzy Preference Modelling and
Multicriteria Decision Support. Kluwer, Dordrecht.

[10] Klement, E., Mesiar, R. and Pap, E.: (2002), Triangular Norms. Trends
in Logic, Studia Logica Library, Vol. 8, Kluwer, Dordrecht.

[11] Monjardet, B.: (1988), A generalisation of probabilistic consistency:
linearity conditions for valued preference relations, Non-Conventional
Preference Relations in Decision Making, Lecture Notes in Economics
and Mathematical Systems 301: 37–53.

[12] Shepard, R.N.: (1964), Circularity in judgments of relative pitch, Jour-
nal of the Acoustical Society of America 36: 2346–2353.

[13] Switalski, Z.: (1999), Rationality of fuzzy reciprocal preference relations,
Fuzzy Sets and Systems 107: 187–190.

[14] Switalski, Z.: (2001), Transitivity of fuzzy preference relations – an
empirical study, Fuzzy Sets and Systems 118: 503–508.

[15] Switalski, Z.: General transitivity conditions for fuzzy reciprocal pref-
erence matrices, Fuzzy Sets and Systems, to appear.

[16] Tversky, A.: (1969), Intransitivity of preferences, Psychological Review
76: 31–38.

22


