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Abstract

A recently proposed method for the pairwise comparison of arbitrary independent
random variables results in a probabilistic relation. When restricted to discrete ran-
dom variables uniformly distributed on finite multisets of numbers, this probabilis-
tic relation expresses the winning probabilities between pairs of hypothetical dice
that carry these numbers and exhibits a particular type of transitivity called dice-
transitivity. In case these multisets have equal cardinality, two alternative methods
for statistically comparing the ordered lists of the numbers on the faces of the dice
have been studied recently: the comonotonic method based upon the comparison
of the numbers of the same rank when the lists are in increasing order, and the
countermonotonic method, also based upon the comparison of only numbers of the
same rank but with the lists in opposite order. In terms of the discrete random
variables associated to these lists, these methods each turn out to be related to a
particular copula that joins the marginal cumulative distribution functions into a
bivariate cumulative distribution function. The transitivity of the generated proba-
bilistic relation has been completely characterized. In this paper, the list comparison
methods are generalized for the purpose of comparing arbitrary random variables.
The transitivity properties derived in the case of discrete uniform random variables
are shown to be generic. Additionally, it is shown that for a collection of normal
random variables, both comparison methods lead to a probabilistic relation that is
at least moderately stochastic transitive.
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1 Introduction

Recently, we have established and analyzed a method for comparing a finite
number of independent random variables (r.v.) X1, X2, . . . , Xm in a pairwise
manner [5]. In particular, a so-called probabilistic relation Q is generated,
which can be interpreted as a graded preference relation expressing intensities
of preference [11]. For discrete r.v., these intensities of preference can be re-
garded as winning probabilities in a dice game, each r.v. being associated to
a (possibly unfair) hypothetical dice with an arbitrary number of faces, each
containing an arbitrary number of eyes [4].

For the sake of comparing discrete r.v. that are uniformly distributed on finite
(multi)sets, we have recently incorporated into the original dice model some
alternative statistical comparison strategies [6]. The main idea is to order the
numbers on the faces of the dice (or, equivalently, the elements of the multisets)
so as to associate to each r.v. a unique ordered list. In [6], we have established
two extreme ways of comparing two such lists: either couples of elements of
the same rank are compared when the lists are in the same order, which is
characteristic for the so-called comonotonic comparison strategy, or couples
of elements of the same rank are compared when the lists are in the opposite
order, which is characteristic for the so-called countermonotonic comparison
strategy.

These two extreme comparison strategies are unambiguously related to the
particular way the bivariate c.d.f. of any couple of r.v. used to compute the
pairwise winning probabilities and to generate the probabilistic relation, de-
pends upon the marginal discrete uniform distributions, in other words, the
comparison strategies are completely characterized by the copula which for
the purpose of comparison artificially couples the marginal cumulative dis-
tributions into a bivariate c.d.f. More precisely, the comonotonic compari-
son strategy is related to the minimum operator TM (TM(x, y) = min(x, y),
also called the Fréchet-Hoeffding upper bound), whereas the countermono-
tonic comparison strategy is related to the ÃLukasiewicz copula TL (TL(x, y) =
max(x + y − 1, 0), also called the Fréchet-Hoeffding lower bound). Note that
these two copulas are also the two extreme copulas in between which all other
copulas are situated. It should also be remarked that in the literature on
copulas, these copulas are usually denoted W and M instead of their t-norm
equivalents TL and TM. Let us recall that a binary operation T : [0, 1]2 → [0, 1]
is called a t-norm if it is increasing, associative, commutative and possesses 1
as neutral element [13].

The original dice model is also related to a specific copula. Indeed, the statis-
tical comparison of two dice amounts to the elementwise comparison of their
associated (ordered) lists so that each element of one list is compared to each
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element of the other (which, in fact, makes the ordering of the list numbers
irrelevant). The copula that characterizes such a comparison strategy is the
ordinary product copula TP(x, y) = xy. As a consequence, all bivariate c.d.f.
are simply the product of two one-dimensional marginal c.d.f. and therefore
the r.v. can be regarded as pairwisely independent. It should, however, be
emphasized that the two alternative extreme comparison strategies and par-
ticularly the copulas that characterize these strategies, should not be regarded
as a means of taking into account a possible pairwise dependence of the given
r.v. The dependence structure of a random vector with m components being
entirely captured by the m-dimensional joint c.d.f., it is very unlikely that
all bivariate c.d.f. derived from it be expressible by means of a same copula.
In fact, though there does exist a random vector with all pairs of its compo-
nents coupled comonotonically, no random vector can be found such that all
pairs of components are coupled countermonotonically. The existence and con-
struction of a joint c.d.f., given all the bivariate distributions, in other words
finding an m-copula that has prescribed marginal 2-copulas is a famous open
problem in the theory of copulas, closely related to the so-called compatibility
problem [15]. We circumvent this problem by interpreting the copula as an ar-
tificial device for comparison purposes not related to the possible dependence
between the r.v.

For uniformly distributed discrete r.v. we have studied the type of transitiv-
ity exhibited by the generated probabilistic relation when the r.v. are cou-
pled either by TP, TM or TL [4,6]. These types of transitivity, respectively
called dice-transitivity, ÃLukasiewicz-transitivity and partial stochastic tran-
sitivity [9], perfectly fit into the framework of cycle-transitivity introduced
by the present authors [3]. Furthermore, we have proven in [5] that dice-
transitivity is the genuine type of transitivity corresponding to the coupling
by TP, in the sense that for arbitrary discrete or continuous r.v., the generated
probabilistic relation is at least dice-transitive.

In the present paper, we demonstrate that, whatever the marginal c.d.f. of the
r.v. be, ÃLukasiewicz-transitivity is the genuine type of transitivity of the prob-
abilistic relation when the coupling is done by TM, whereas partial stochastic
transitivity is the genuine type of transitivity when the coupling is done by
TL. The outline of the paper is as follows. First, the general recipe for generat-
ing a probabilistic relation from a given collection of r.v. is briefly discussed.
Then, two sets of formulae to compute the probabilistic relations QM and
QL, respectively obtained with the coupling by TM and TL, are established:
one set for the case of arbitrary discrete r.v., the other set for the case of
arbitrary continuous r.v. Furthermore, the transitivity properties previously
derived for discrete uniformly distributed r.v. are shown to hold for arbitrary
r.v. Finally, for both extreme couplings the transitivity of the probabilistic
relation generated by a collection of normal r.v. is analysed.
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2 A general method for comparing random variables

An immediate way of comparing two r.v. X1 and X2 is to consider the proba-
bility that the first one takes a greater value than the second one. Proceeding
along this line of thought, a collection {X1, X2, . . . , Xm} of r.v. generates a
probabilistic relation, also called reciprocal relation or ipsodual relation, in
the following way.

Definition 1 Given a collection {X1, X2, . . . , Xm} of random variables, the
binary relation Q defined by:

Q(Xi, Xj) = Prob{Xi > Xj} +
1

2
Prob{Xi = Xj} (1)

is a probabilistic relation, i.e. for all i, j it holds that Q(Xi, Xj)+Q(Xj, Xi) =
1.

In general, probabilistic relations are not only a convenient tool for expressing
the result of the pairwise comparison of a set of alternatives [1], but they
also appear in various fields such as game theory [8], voting theory [12,16]
and psychological studies on preference and discrimination in (individual or
collective) decision making methods [7].

It is clear from the definition that in the case of discrete r.v. the relation Q
can be immediately computed as:

Q(Xi, Xj) =
∑

k>l

pXi,Xj
(k, l) +

1

2

∑

k

pXi,Xj
(k, k) , (2)

with pXi,Xj
the joint probability mass function (p.m.f.) of (Xi, Xj) which es-

sentially depends upon the copula used to compare the discrete r.v.

In the case of a collection of continuous r.v., Q is computed as:

Q(Xi, Xj) =
∫

x>y
dFXi,Xj

(x, y) +
1

2

∫

x=y
dFXi,Xj

(x, y) , (3)

with the bivariate c.d.f. FXi,Xj
(x, y) as given in (4).

The cornerstone for computing this probabilistic relation Q is the knowledge
of the bivariate cumulative distribution function (c.d.f.) FXi,Xj

of all pairs
Xi, Xj of r.v. Sklar’s theorem [15,17] tells us that if a joint c.d.f. FXi,Xj

has
marginals FXi

and FXj
, then there exists a 2-copula (or simply a copula) Cij,

such that for all x, y:

FXi,Xj
(x, y) = Cij(FXi

(x), FXj
(y)) . (4)
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Let us recall [15] that a copula is a binary operation C : [0, 1]2 → [0, 1], that
has neutral element 1 and absorbing element 0 and that satisfies the property
of moderate growth: for any (x1, x2, y1, y2) ∈ [0, 1]4

(x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1) .

If Xi and Xj are continuous, then C in (4) is unique; otherwise, C is uniquely
determined on Ran(FXi

)×Ran(FXj
). Conversely, if C is a copula and FXi

and
FXj

are c.d.f. then the function defined by (4) is a joint c.d.f. with marginals
FXi

and FXj
.

If the copula Cij has full support on [0, 1]2, then the second integral in (3) van-
ishes and in the first integral dFXi,Xj

(x, y) can be written as fXi,Xj
(x, y)dxdy

with fXi,Xj
the joint probability density function (p.d.f.) of (Xi, Xj). This

is, for instance, the case for the product TP where, moreover, fXi,Xj
(x, y) =

fXi
(x)fXj

(y). On the other hand, for TM and TL, being singular copulas with
a diagonal of the unit square as support – the diagonal with positive slope for
TM and the diagonal with negative slope for TL –, a bivariate p.d.f. does not
exist.

3 Comparison of discrete random variables

We now turn to the case of a collection {X1, X2, . . . , Xm} of discrete r.v., each
Xi distributed on a finite integer multiset Ai with elements xi

1 ≤ xi
2 ≤ · · · ≤ xi

ni

and associated marginal probability masses pi
1, p

i
2, . . . , p

i
ni

.

In the case of coupling by TP, the following formula for the associated proba-
bilistic relation QP was derived in [5]:

QP(Xi, Xj) =
ni
∑

k=1

nj
∑

l=1

pi
kp

j
l δ

P

kl , (5)

with

δP

kl =































1 , if xi
k > xj

l ,

1/2 , if xi
k = xj

l ,

0 , if xi
k < xj

l .

(6)

In particular, if the r.v. are uniformly distributed on multisets Ai of the same
cardinality n, formula (5) simplifies to:

QP(Xi, Xj) =
1

n2

n
∑

k,l=1

δP

kl ,
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showing that if the elements of the multisets Ai denote the number of eyes on
the faces of hypothetical fair dice with n faces, then QP(Xi, Xj) corresponds to
the winning probability of dice i w.r.t. dice j when both dice are independently
thrown (assuming that a tie leads to a replay). This interpretation of the
proposed comparison method leads to what we previously have called the dice
model.

If the coupling is done by TM the following result holds:

Proposition 2 Consider a collection {X1, X2, . . . , Xm} of discrete random
variables distributed on (not necessarily disjoint) finite integer multisets Ai

with elements xi
1 ≤ xi

2 ≤ · · · ≤ xi
ni

and associated marginal probability masses
pi

1, p
i
2, . . . , p

i
ni

and assume that for comparison purposes these random variables
are coupled by TM. For the computation of QM(Xi, Xj) the multisets Ai and
Aj are first transformed into new multisets Āi and Āj of the same cardinality
n with elements x̄i

1 ≤ x̄i
2 ≤ · · · ≤ x̄i

n and x̄j
1 ≤ x̄j

2 ≤ · · · ≤ x̄j
n, and such that the

associated probability masses are pairwisely equal, i.e. for all k = 1, 2, . . . , n,
it holds that p̄i

k = p̄j
k = p̄ij

k . Then QM(Xi, Xj) is given by:

QM(Xi, Xj) =
n

∑

k=1

p̄ij
k δ̄M

k (7)

with

δ̄M

k =































1 , if x̄i
k > x̄j

k ,

1/2 , if x̄i
k = x̄j

k ,

0 , if x̄i
k < x̄j

k .

(8)

Proof: The transformation of the multisets Ai and Aj into multisets Āi and
Āj of the same cardinality n, such that for all k the probability masses of
x̄i

k and x̄j
k are both equal to p̄k, should leave the marginal c.d.f. FXi

and FXj

and therefore also the bivariate c.d.f. FXi,Xj
invariant. Such a transformation

can be easily established by duplicating some elements of Ai and Aj and
by carefully partitioning the associated probability masses over duplicated
elements. This is illustrated after this proof.

Assuming that this first transformation step has been carried out, there re-
mains to prove that (7) holds for the coupling by TM. In general, the bivariate
probability masses are computed as:

p̄Xi,Xj
(x̄i

k, x̄
j
l ) = FXi,Xj

(x̄i
k, x̄

j
l ) + FXi,Xj

(x̄i
k−1, x̄

j
l−1)

−FXi,Xj
(x̄i

k−1, x̄
j
l ) − FXi,Xj

(x̄i
k, x̄

j
l−1) , (9)
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where k and l run from 1 to n. Also, by convention, it holds for any i that
FXi

(x̄i
k) is zero for all k ≤ 0 and one for all k ≥ n. Since

FXi,Xj
(x̄i

k, x̄
j
l ) = min(FXi

(x̄i
k), FXj

(x̄j
l )) = FXi

(x̄i
min(k,l)) = FXj

(x̄j
min(k,l)) ,

substitution in (9) leads to:

p̄Xi,Xj
(x̄i

k, x̄
j
l ) =















0 , if k 6= l ,

FXi
(x̄i

k) − FXi
(x̄i

k−1) = p̄k , if k = l .

Taking into account (2), formulae (7) and (8) follow. 2

Let us illustrate the above procedure on an example.

Example 3 Suppose Xi is a discrete r.v. on the set {1, 3, 4}, i.e. xi
1 = 1,

xi
2 = 3 and xi

3 = 4, with probabilities pi
1 = 0.15, pi

2 = 0.40 and pi
3 = 0.45,

and Xj a discrete r.v. on the set {2, 3, 5}, i.e. xj
1 = 2, xj

2 = 3 and xj
3 = 5,

with probabilities pj
1 = 0.35, pj

2 = 0.35 and pj
3 = 0.30. The step of duplicating

elements and partitioning probabilities goes as follows. Since pj
1 > pi

1 and
pi

1 +pi
2 > pj

1, the element xj
1 is duplicated and to the two new elements x̄j

1 and
x̄j

2, both equal to 2, are assigned the probabilities p̄j
1 = 0.15 and p̄j

2 = 0.20,
respectively. We also set x̄i

1 = 1 and p̄i
1 = 0.15. Proceeding in the same way

until all probabilities are pairwisely the same, we obtain that the first set
{1, 3, 4} is finally transformed into the multiset {1, 3, 3, 4, 4} and the second set
{2, 3, 5} into the multiset {2, 2, 3, 3, 5}, while for both multisets the associated
probabilities are 0.15, 0.20, 0.20, 0.15, 0.30. Note that n = 5. Application of (7)
now immediately results in QM(Xi, Xj) = 0.20 + 0.20/2 + 0.15 = 0.45. ⊲

We next turn our attention to the pairwise coupling of discrete r.v. by TL.

Proposition 4 Consider a collection {X1, X2, . . . , Xm} of discrete random
variables distributed on (not necessarily disjoint) finite integer multisets Ai

with elements xi
1 ≤ xi

2 ≤ · · · ≤ xi
ni

and associated marginal probability masses
pi

1, p
i
2, . . . , p

i
ni

and assume that for comparison purposes these random variables
are coupled by TL. For the computation of QL(Xi, Xj) the multisets Ai and Aj

are first transformed into new multisets Āi and Āj of the same cardinality n
with elements x̄i

1 ≤ x̄i
2 ≤ · · · ≤ x̄i

n and x̄j
1 ≤ x̄j

2 ≤ · · · ≤ x̄j
n, respectively,

and such that for the associated probability masses p̄i
k and p̄j

k it holds that
p̄i

k = p̄j
n−k+1 = p̄ij

k for all k = 1, 2, . . . , n. Then QL(Xi, Xj) is given by:

QL(Xi, Xj) =
n

∑

k=1

p̄ij
k δ̄L

k , (10)
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with

δ̄L

k =































1 , if x̄i
k > x̄j

n−k+1 ,

1/2 , if x̄i
k = x̄j

n−k+1 ,

0 , if x̄i
k < x̄j

n−k+1 .

(11)

Proof: The transformation of the given multisets Ai and Aj into equivalent
multisets Āi and Āj is exactly the same as in the case of the coupling by TM,
provided the elements of one of the two given sets, say Aj, are listed in reversed
order before the transformation is carried out, and the increasing ordering is
restored after the transformation is carried out. Next, the proof proceeds in
the same way as for the coupling by TM and one obtains:

p̄Xi,Xj
(x̄i

k, x̄
j
l ) =















0 , if k 6= n + 1 − l ,

FXi
(x̄i

k) − FXi
(x̄i

k−1) = p̄k , if k = n + 1 − l ,

from which, again taking into account (2), formulae (10) and (11) immediately
follow. 2

Example 5 Let us illustrate the computation of QL(Xi, Xj) on the same ex-
ample as before. Now, the first set Ai = {1, 3, 4} is transformed into the mul-
tiset Āi = {1, 3, 3, 4, 4} with associated probabilities 0.15, 0.15, 0.25, 0.10, 0.35
while the second set Aj = {2, 3, 5} is transformed into the equivalent multi-
set Āj = {2, 3, 3, 5, 5} with associated probabilities 0.35, 0.10, 0.25, 0.15, 0.15.
Again n = 5 and application of (10) results in QL(X,Y ) = 0.25/2 + 0.10 +
0.35 = 0.575. ⊲

If the discrete r.v. Xi and Xj are both uniformly distributed on finite multisets
of the same cardinality n, then the first transformation step is superfluous and
according to (7) and (10), for both extreme couplings the comparison of these
r.v. amounts to the comparison of the lists of increasingly ordered numbers
derived from the respective multisets. If the coupling is comonotonic, then
the two lists are compared by comparing the elements of same rank; if the
coupling is countermonotonic, then the lists are compared by comparing the
elements of complementary rank, in other words, the elements to be compared
have ranks whose sum is n + 1. This latter situation is clearly equivalent with
the comparison of elements of the same rank if one list is increasingly and the
other one decreasingly ordered.
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4 Comparison of continuous random variables

The comparison of pairwise independent continuous r.v., i.e. of continuous r.v.
that are coupled by TP (the bivariate joint p.d.f. are factorizable as fXi,Xj

=
fXi

fXj
), yields a probabilistic relation denoted QP. According to (3), QP can

be computed as:

QP(Xi, Xj) =
∫ +∞

−∞

fXi
(x)FXj

(x) dx = EXi
[FXj

] , (12)

the last expression denoting the expected value w.r.t. Xi of the c.d.f. FXj
.

Let us next compare continuous r.v. X1, X2, . . . , Xm, each couple (Xi, Xj)
being (artificially) coupled by TM, i.e. for all (i, j) we define a bivariate c.d.f.
by:

FXi,Xj
(x, y) = min(FXi

(x), FXj
(y)) . (13)

Proposition 6 Consider a collection {X1, X2, . . . , Xm} of continuous ran-
dom variables with probability density function fXi

and assume that for com-
parison purposes these random variables are pairwisely coupled by TM. Then
the probabilistic relation QM, defined by QM(Xi, Xj) = Prob{Xi > Xj} +
1/2Prob{Xi = Xj}, can be computed as:

QM(Xi, Xj) =
∫

x:FXi
(x)<FXj

(x)
fXi

(x) dx +
1

2

∫

x:FXi
(x)=FXj

(x)
fXi

(x) dx . (14)

Proof: Expression (13) for the bivariate c.d.f. of any couple (Xi, Xj) can be
written as:

FXi,Xj
(x, y) =















FXj
(y) , if y ≤ F−1

Xj
(FXi

(x)) ,

FXi
(x) , if y ≥ F−1

Xj
(FXi

(x)) ,

where F−1
Xj

denotes the pseudo-inverse of FXj
. It follows that

∂FXi,Xj
(x, y)

∂x
=















0 , if y < F−1
Xj

(FXi
(x)) ,

fXi
(x) , if y ≥ F−1

Xj
(FXi

(x)) ,

and
∂2FXi,Xj

(x, y)

∂x∂y
= fXi

(x)δ(y − F−1
Xj

(FXi
(x))) , (15)

where δ(·) denotes the Dirac-delta functional. By substituting (15) into the
first (double) integral on the r.h.s. of (3), the domain of integration in R

2 is
defined by y = F−1

Xj
(FXi

(x)) and x > y, reducing the double integral to a single
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integral on the domain in R defined by the inequality FXi
(x) < FXj

(x). Simi-
larly, substituting (15) into the second (double) integral on the r.h.s. of (3), the
domain of integration is now defined by the two equalities y = F−1

Xj
(FXi

(x))
and x = y, reducing the double integral to a single integral on the domain
in R defined by the equality FXi

(x) = FXj
(x). This immediately leads to the

result (14). 2

{

{

} t1

t2

t3

F( )x
FX

FY

FX

FY

0 x

Fig. 1. Comparison of two continuous random variables coupled by TM.

A graphical interpretation of (14) is shown in Figure 1. The two curves cor-
respond to the marginal c.d.f. FX and FY of two r.v. X and Y . According
to (14), we have to distinguish three domains: the domain where FX lies be-
neath FY , the domain where FX lies above FY , and the domain where FX and
FY coincide. The value of QM(X,Y ) is computed as the sum of the increment
of FX over the first domain and half of the increment of FX (or FY ) over
the third domain. With the notations shown on Figure 1, we obtain for the
example: QM(X,Y ) = t1 + t3 + 1

2
t2.

Let us next couple the continuous r.v. X1, X2, . . . , Xm by TL, i.e. for all (i, j)
we define a bivariate c.d.f. by:

FXi,Xj
(x, y) = max(FXi

(x) + FXj
(y) − 1, 0) . (16)

Proposition 7 Consider a collection {X1, X2, . . . , Xm} of continuous ran-
dom variables with probability density function fXi

and assume that for com-
parison purposes these random variables are pairwisely coupled by TL. Then
the probabilistic relation QL, defined by QL(Xi, Xj) = Prob{Xi > Xj}, can be
computed as:

QL(Xi, Xj) =
∫

x:FXi
(x)+FXj

(x)≥1
fXi

(x) dx , (17)

or, equivalently:

QL(Xi, Xj) = FXj
(u) with u such that FXi

(u) + FXj
(u) = 1 . (18)

Proof: Expression (16) of the assumed bivariate c.d.f. of any couple (Xi, Xj)
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can be written as:

FXi,Xj
(x, y) =















0 , if y ≤ F−1
Xj

(1 − FXi
(x)) ,

FXi
(x) + FXj

(y) − 1 , if y ≥ F−1
Xj

(1 − FXi
(x)) ,

from which it follows that

∂FXi,Xj
(x, y)

∂x
=















0 , if y < F−1
Xj

(FXi
(x)) ,

fXi
(x) , if y ≥ F−1

Xj
(1 − FXi(x)) ,

and

∂2FXi,Xj
(x, y)

∂x∂y
= δ(y − F−1

Xj
(1 − FXi

(x))) (19)

Substitution of (19) into (3) now leads to

QL(Xi, Xj) =
∫

FXi
(x)+FXj

(x)>1
fXi

(x) dx +
1

2

∫

FXi
(x)+FXj

(x)=1
fXi

(x) dx .

The last integral vanishes since FXi
is necessarily constant on its integration

domain, whence fXi
= 0 on that domain. This proves (17), a formula in which

it is now optional to add the equality sign in the definition of the integration
domain. 2

Note that u in (18) might not be unique, in which case any u fulfilling the
right equality may be considered. This is illustrated in Figure 2 for two r.v. X
and Y . QL(X,Y ) is simply the value of FY in u, since QL(X,Y ) = FY (u) = t1
and t1 + t2 = 1.

F( )x

x

FX

FY

t1

t2

FY

FX

0

1

{ }

u

Fig. 2. Comparison of two continuous random variables coupled by TL.
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5 Transitivity of the probabilistic relations QM and QL

Let us briefly recall the concept of cycle-transitivity. In the framework of
cycle-transitivity [3], for a probabilistic relation Q = [qij], the quantities

αijk = min(qij, qjk, qki) , βijk = med(qij, qjk, qki) , γijk = max(qij, qjk, qki) ,

are defined for all (i, j, k). Obviously, αijk ≤ βijk ≤ γijk. Also, the notation
∆ = {(x, y, z) ∈ [0, 1]3 |x ≤ y ≤ z} is used.

Definition 8 A function U : ∆ → R is called an upper bound function if it
satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;
(ii) for any (α, β, γ) ∈ ∆:

U(α, β, γ) + U(1 − γ, 1 − β, 1 − α) ≥ 1 .

The original definition of cycle-transitivity given in [3] turns out to be equiv-
alent to

Proposition 9 A probabilistic relation Q = [qij] is cycle-transitive w.r.t. an
upper bound function U , if for all (i, j, k) it holds that

αijk + βijk + γijk − 1 ≤ U(αijk, βijk, γijk) . (20)

Note that a value of U(α, β, γ) equal to 2 is used to express that for the given
values there is no restriction at all (indeed, α + β + γ − 1 is always bounded
by 2).

Cycle-transitivity includes as special cases T -transitivity and all known types
of g-stochastic transitivity. A [0, 1]-valued relation R on a set of alternatives A
is called T -transitive [10] if for any (a, b, c) ∈ A3 it holds that T (R(a, b), R(b, c))
≤ R(a, c). The following proposition shows how T -transitivity fits into the
framework of cycle-transitivity in case the t-norm T is 1-Lipschitz continuous
(for short, 1-Lipschitz), which means that for all (x, y, z) ∈ [0, 1]3 it holds that
|T (x, y) − T (x, z)| ≤ |y − z| [3].

Proposition 10 Let T be a 1-Lipschitz t-norm. A probabilistic relation is T -
transitive if and only if it is cycle-transitive w.r.t. the upper bound function
UT defined by

UT (α, β, γ) = α + β − T (α, β) . (21)

Note that 1-Lipschitz t-norms can also be regarded as associative and com-
mutative copulas. The special t-norms TP, TM and TL are examples of 1-
Lipschitz t-norms. By means of (21) we immediately find that TM-transitivity,

12



TP-transitivity and TL-transitivity are equivalent with cycle-transitivity w.r.t.
the upper bound functions UM(α, β, γ) = β, UP(α, β, γ) = α + β − αβ and
UL(α, β, γ) = min(α + β, 1), respectively. For the case of TL-transitivity, an
equivalent upper bound function is given by U ′

L
(α, β, γ) = 1.

In the literature one finds various types of stochastic transitivity [1,14]. They
can, however, be regarded as special cases of a generic type of stochastic transi-
tivity, which we have called g-stochastic transitivity. Let g be a commutative,
increasing [1/2, 1]2 → [1/2, 1] mapping. A probabilistic relation Q on A is
called g-stochastic transitive if for any (a, b, c) ∈ A3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) .

In [3], we have proven the following proposition.

Proposition 11 Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1] map-
ping such that g(1/2, x) ≤ x for any x ∈ [1/2, 1]. A probabilistic relation Q
is g-stochastic transitive if and only if it is cycle-transitive w.r.t. the upper
bound function Ug defined by

Ug(α, β, γ) =



























β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(22)

We obtain as special cases (only mentioning the function g):

(i) strong stochastic transitivity: gss(β, γ) = max(β, γ) = γ;
(ii) moderate stochastic transitivity: gms(β, γ) = min(β, γ) = β;
(iii) weak stochastic transitivity: gws(β, γ) = 1/2.

The transitivity exhibited by a probabilistic relation QP generated by a col-
lection of arbitrary independent discrete or continuous r.v., is called dice-
transitivity [4,5]. It has the particularity that it can neither be classified as a
type of T -transitivity, nor as a type of g-stochastic transitivity, but nicely fits
into the framework of cycle-transitivity [2]. More precisely, a dice-transitive
probabilistic relation is cycle-transitive w.r.t. the upper bound function UD

defined by

UD(α, β, γ) = β + γ − βγ . (23)

Dice-transitivity can be situated between TP-transitivity and TL-transitivity,
and also between moderate stochastic transitivity and TL-transitivity.

In [6], it has been proven that for discrete r.v. uniformly distributed on finite
multisets of the same cardinality, the probabilistic relation QM is TL-transitive,
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that is, cycle-transitive w.r.t. the upper bound function U ′
L
(α, β, γ) = 1. Also,

any 3-dimensional TL-transitive probabilistic relation with rational elements
can be generated by the application of the comonotonic comparison strategy to
a collection of three ordered lists of the same length. This also proves that there
does not exist a stronger type of transitivity than TL-transitivity that holds for
all probabilistic relations QM. The following proposition complements these
results.

Proposition 12 The probabilistic relation QM generated by a collection of
random variables that are pairwisely coupled by the copula TM is TL-transitive.

Proof: One possible proof is completely analogous to the one given in [5]
which allowed to conclude that the transitivity exhibited by the probabilis-
tic relation QP generated by discrete uniformly distributed r.v., remains un-
changed for collections of arbitrary r.v. The main steps are the following.
Since the set of rationals is dense in the set of reals, any discrete distribution
can be approximated with arbitrary precision by a discrete distribution with
rational probability masses. The latter can be regarded as a uniform distri-
bution on a multiset. Also, any continuous distribution can be approximated
with arbitrary precision by a discrete distribution. If the precision of the ap-
proximations is sufficiently high, the transitivity of the generated probabilistic
relation remains unaltered. 2

We now turn to the case of a collection of random variables pairwisely coupled
by the copula TL. In [6], it has been proven that for discrete r.v. uniformly dis-
tributed on finite multisets of the same cardinality, the probabilistic relation
QL is partially stochastic transitive, that is, cycle-transitive w.r.t. the upper
bound function UB(α, β, γ) = γ. Also, any 3-dimensional partially stochastic
transitive probabilistic relation with rational elements can be generated by
the application of the countermonotonic comparison strategy to a collection
of three ordered lists of the same length, from which it follows that there does
not exist a stronger type of transitivity than partial stochastic transitivity that
holds for all probabilistic relations QL. Note that partial stochastic transitiv-
ity should be situated between TM-transitivity and dice-transitivity and also
between TM-transitivity and moderate stochastic transitivity. In fact, it can be
regarded as a variant of moderate stochastic transitivity, since a probabilistic
relation Q on A is called partially stochastic transitive if for any (a, b, c) ∈ A3

it holds that

(Q(a, b) > 1/2 ∧ Q(b, c) > 1/2) ⇒ Q(a, c) ≥ min(Q(a, b), Q(b, c)) .

Proposition 13 The probabilistic relation QL generated by a collection of
random variables that are pairwisely coupled by the copula TL is partially
stochastic transitive.
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Proof: The same reasoning as for r.v. that are pairwisely coupled by TP or TM

leads to the required result. For the case of a collection of continuous r.v. it is
nonetheless possible to give an elegant direct proof of the stated transitivity
property.

Indeed, consider three r.v. X,Y, Z with c.d.f. FX , FY , FZ , respectively. Denote
by u a value such that FX(u) + FY (u) = 1, by v a value such that FY (v) +
FZ(v) = 1 and by w a value such that FZ(w)+FX(w) = 1. From the graphical
representation of QL as illustrated in Figure 1 we know that QL(X,Y ) =
FY (u), QL(Y, Z) = FZ(v), and QL(Z,X) = FX(w). It follows that

QL(X,Y ) + QL(Y, Z) + QL(Z,X) − 1

= FY (u) + FZ(v) + FX(w) − 1

= FY (u) + FZ(v) − FZ(w) (24)

= FZ(v) + FX(w) − FX(u)

= FX(w) + FY (u) − FY (v) .

Whatever the ordering of u, v, w is, at least one of the expressions FZ(v) −
FZ(w), FX(w) − FX(u), and FY (u) − FY (v) is non-positive. In the last three
expressions of (24) the term that comes with the minimum of FZ(v)−FZ(w),
FX(w) − FX(u), and FY (u) − FY (v) is the maximum of FY (u), FZ(v), and
FX(w). Since the minimum is non-positive, it follows that

QL(X,Y ) + QL(Y, Z) + QL(Z,X) − 1 ≤ max(FY (u), FZ(v), FX(w)) ,

which is equivalent to saying that QL is cycle-transitive w.r.t. UB. 2

6 Normal random variables

Let us consider a collection of normally distributed r.v. Xi
d
= N(µi, σ

2
i ). Pre-

viously, we have shown that if the r.v. are pairwisely independent, in other
words, the comparison of pairs of r.v. is based upon their coupling by TP, the
probabilistic relation QP generated by the collection of r.v. can be computed
as:

QP(Xi, Xj) = Φ





µi − µj
√

σ2
i + σ2

j



 , (25)

where Φ denotes the c.d.f. of the standard normal distribution N(0, 1). More-
over, we have proven that the probabilistic relation QP is moderately stochas-
tic transitive [5]. In this section, we want to investigate the transitivity of
the probabilistic relations generated by the same collection of normal r.v. but
pairwisely coupled by either TM or TL.
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Proposition 14 Let Xi
d
= N(µi, σ

2
i ), i = 1, . . . ,m, be normally distributed. If

the random variables Xi, Xj, with FXi
6= FXj

, are coupled by TM, the proba-
bilistic relation QM can be computed as:

QM(Xi, Xj) = Φ

(

µi − µj

|σi − σj|

)

, (26)

whereas, if they are coupled by TL, the probabilistic relation QL can be computed
as:

QL(Xi, Xj) = Φ

(

µi − µj

σi + σj

)

. (27)

If FXi
= FXj

then it holds that QM(Xi, Xj) = QL(Xi, Xj) = 1/2.

Proof: Let us first consider the coupling by TM. We can make use of the
graphical interpretation of QM (cfr. Figure 1). If σi 6= σj, the c.d.f. FXi

(x) =
Φ((x−µi)/σi) of Xi has exactly one point in common with the c.d.f. FXj

(x) =
Φ((x−µj)/σj) of Xj, namely the point with abscis x0 = (µiσj−µjσi)/(σj−σi),
where both c.d.f. attain the value Φ((µi −µj)/(σj −σi)). We have to compute
the growth of FXi

on the interval where FXi
lies below FXj

. If σi > σj, this
interval extends from x0 to +∞ and

QM(Xi, Xj) = 1 − Φ

(

µi − µj

σj − σi

)

= Φ

(

µi − µj

σi − σj

)

.

If σi < σj, this interval extends from −∞ to x0 and

QM(Xi, Xj) = Φ

(

µi − µj

σj − σi

)

.

Both cases can be combined into (26). Considering the appropriate limits, the
latter formula is also valid when σi = σj and µi 6= µj, as it yields QM(Xi, Xj) =
Φ(−∞) = 0 if µi < µj and QM(Xi, Xj) = Φ(+∞) = 1 if µi > µj. This is in
agreement with the fact that in the former case FXi

lies entirely above and
in the latter case entirely below FXj

. Finally, if µi = µj and σi = σj we have
that FXi

= FXj
and therefore QM(Xi, Xj) = 1/2.

If the pairwise coupling is done by TL, we have to find a point u such that
FXi

(u) + FXj
(u) = 1. The unique solution of the equation Φ((u − µi)/σi) +

Φ((u − µj)/σj) = 1 being u = (µiσj + µjσi)/(σi + σj), QL(Xi, Xj), which
according to the graphical interpretation of QL (see Figure 2) is the growth
of FXj

on the interval [−∞, u], is readily seen to be given by (27). 2

The transitivity of the probabilistic relation Q generated by arbitrary r.v.
depends on the copula that pairwisely couples the r.v. In the remaining part
of this section, we prove that in the case of normal r.v. pairwisely coupled by
either TM, TP or TL, the generated probabilistic relation is at least moderately
stochastic transitive.
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Proposition 15 The probabilistic relation generated by a collection of nor-
mally distributed random variables, pairwisely coupled by the same copula be-
longing to the set {TM, TP, TL}, is moderately stochastic transitive.

Proof: The proof that QP is moderately stochastic transitive when the r.v.
are coupled by TP has been previously given in [5]. Here we focus on the
proof for the two other copulas and start with the comonotonic case of QM.
We introduce first some notations.

Let Xi
d
= N(µi, σ

2
i ), Xj

d
= N(µj, σ

2
j ) and Xk

d
= N(µk, σ

2
k) be three normal r.v.

with different variances and pairwisely coupled by TM. Let α, β and γ denote,
as usual, the minimum, the median and the maximum of the three values
QM(Xi, Xj), Q

M(Xj, Xk) and QM(Xk, Xi). Without loss of generality, we can
assume that the labels i, j, k are attributed such that β ≥ 1/2. Let us finally
introduce the notations uα = Φ−1(α), uβ = Φ−1(β) and uγ = Φ−1(γ). Clearly
uα ≤ uβ ≤ uγ and uβ ≥ 0, whereas it follows from (26) that (uα, uβ, uγ) is a
permutation of

(

µi − µj

|σi − σj|
,

µj − µk

|σj − σk|
,

µk − µi

|σk − σi|

)

.

Let (φα, φβ, φγ) denote the corresponding permutation of (|σi − σj|, |σj −
σk|, |σk − σi|). It follows that the equality

φαuα + φβuβ + φγuγ = 0 , (28)

should hold for any φα, φβ, φγ , which from their definition are strictly positive
and satisfy

max(φα, φβ, φγ) = med(φα, φβ, φγ) + min(φα, φβ, φγ) .

It follows that uα ≤ 0. Note that if α = 1/2, then uα = 0, and on account of
(28) it must then hold that uβ = uγ = 0, or, equivalently, β = γ = 1/2. Let
us consider the case of α < 1/2, or uα < 0.

(i) If max(φα, φβ, φγ) = φα, then (28) can be reduced to the equality

φβ(uα + uβ) + φγ(uα + uγ) = 0 ,

which is only satisfied if uα + uβ ≤ 0 and uα + uγ ≥ 0. These two conditions
are equivalent to α ≤ 1 − β and α ≥ 1 − γ, or 1 − α ≥ β = min(β, γ) and
γ ≥ 1 − α = max(1 − α, 1 − β).

(ii) If max(φα, φβ, φγ) = φβ, then (28) leads to the condition

φα(uα + uβ) + φγ(uβ + uγ) = 0 ,

which can only be satisfied if uα + uβ ≤ 0 and uβ + uγ ≥ 0, or, equivalently,
α ≤ 1 − β and β ≥ 1 − γ. In this case, it must therefore hold that 1 − α ≥
β = min(β, γ), whereas the second condition is trivially fulfilled.
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(iii) Finally, if max(φα, φβ, φγ) = φγ, then (28) leads to the condition

φα(uα + uγ) + φβ(uβ + uγ) = 0 ,

which can only be satisfied if uα + uγ ≤ 0 and uβ + uγ ≥ 0, or, equivalently,
α ≤ 1−γ and β ≥ 1−γ. Since the second condition is always fulfilled, it must
hold that 1 − α ≥ γ = max(β, γ).

In conclusion, the least restrictive condition encountered when α < 1/2 is
1 − α ≥ min(β, γ). Together with the fact that α = 1/2 implies β = γ = 1/2
proves that QM is moderately stochastic transitive when the variances of the
normal r.v. are mutually different. It can be verified that if two variances are
equal, or if all variances are equal, then the transitivity of QM is not weaker
than moderate stochastic transitivity.

We next turn to the case of the pairwise coupling by TL. Since for arbitrary
r.v. QL is partially stochastic transitive, i.e. cycle-transitive w.r.t the upper
bound function UB(α, β, γ) = γ, this type of transitivity certainly applies to
normal r.v. as well. However, α = 1/2 implies β = γ = 1/2, therefore QL

should be at least moderately stochastic transitive. 2

7 Conclusions

In this paper, we have extended our method for the pairwise comparison of
a collection of independent r.v. to a collection of r.v. that are artificially and
pairwisely coupled by means of a same copula. In particular, the coupling by
one of the extreme copulas TM and TL has been considered in detail.

As for the original method, the present extension with one of the two extreme
copulas generates a probabilistic relation of which the transitivity can be cast
into the framework of cycle-transitivity. In future work, we will try to demon-
strate similar results for other copulas and we will investigate whether the
generated probabilistic relation can serve as a graded alternative to the con-
cept of (first order) stochastic dominance, popular in financial mathematics
and welfare modelling.
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