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Abstract A general framework for studying the transitivity of reciprocal
relations is presented. The key feature is the cyclic evaluation of transi-
tivity: triangles (i.e. any three points) are visited in a cyclic manner. An
upper bound function acting upon the ordered weights encountered pro-
vides an upper bound for the ‘sum minus 1’ of these weights. Commutative
quasi-copulas allow to translate a general definition of fuzzy transitivity
(when applied to reciprocal relations) elegantly into the framework of cycle-
transitivity. Similarly, a general notion of stochastic transitivity corresponds
to a particular class of upper bound functions. Ample attention is given to
self-dual upper bound functions.
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1 Introduction

The goal of this paper is to develop a general framework for studying var-
ious kinds of transitivity of reciprocal relations, i.e. [0, 1]-valued relations
Q satisfying Q(a, b) + Q(b, a) = 1. Such relations are known under various
names such as ipsodual relations or probabilistic relations [11]. A related
concept is that of a comparison function, which takes values in R instead of
[0, 1] and satisfies the condition g(x, y) = −g(y, x) [12].

Comparison functions and reciprocal relations are a convenient tool for
expressing the result of the pairwise comparison of a set of alternatives [8]
and appear in various fields such as game theory [12], voting theory [17,26]
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and psychological studies on preference and discrimination in (individual
or collective) decision-making methods [11]. Reciprocal relations are par-
ticularly popular in fuzzy set theory where they are used for representing
intensities of preference [5,20,31].

In group decision making, reciprocal relations represent collective pref-
erences and are built from individual preferences, either by aggregation
methods [16] or consensus-reaching processes [20]. In social choice theory,
there is a vast literature on the study of choice rules [6,19,26] (resp. choice
correspondences [12,23]) given preferences expressed in terms of reciprocal
relations (resp. comparison functions).

Whatever relational representation is employed for intensities of prefer-
ence, transitivity is always an interesting, often desirable property. In the
context of fuzzy preference modelling, for instance, T -transitivity of fuzzy
(i.e. [0, 1]-valued) relations is an indispensable notion [3,7,14,28]. Some
types of transitivity have been devised specifically for reciprocal relations,
such as various types of stochastic transitivity [13,24,27]. We start out this
paper by recalling some of these notions in Section 2.

Although T -transitivity has been devised for fuzzy relations, and does
not a priori make sense for reciprocal relations, we begin Section 3 with
a careful study of TP-transitivity for reciprocal relations. Our observa-
tions will motivate the introduction of a new type of transitivity, which
is essentially characterized by its cyclic evaluation, whence the term cycle-
transitivity. The central concept is that of an upper bound function. Par-
ticular attention is paid to self-dual upper bound functions.

In Section 4, we show how fuzzy transitivity, and in particular T -transi-
tivity, fits into the new framework. Commutative quasi-copulas, and in par-
ticular members of the Frank t-norm family, permit an elegant reformula-
tion. In Section 5, we propose a broad definition of stochastic transitivity,
of which strong, moderate and weak stochastic transitivity are well-known
instances. It is shown under which conditions this type of transitivity can
be cast into the cycle-transitivity framework as well. Finally, the discussion
of self-duality leads to remarkable results, attributing a particular role to
t-conorms.

2 Transitivity of fuzzy and reciprocal relations

2.1 Transitivity of fuzzy relations

Transitivity is a simple, yet powerful property of relations. A (binary) rela-
tion R on a universe A (often referred to as the set of alternatives) is called
transitive if for any (a, b, c) ∈ A3 it holds that

((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R . (1)

Identifying a relation with its characteristic mapping, i.e. defining

R(a, b) =

{
1 , if (a, b) ∈ R ,

0 , if (a, b) /∈ R ,
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transitivity can be stated equivalently as

(R(a, b) = 1 ∧R(b, c) = 1) ⇒ R(a, c) = 1 .

However, many other equivalent formulations may be devised, such as

(R(a, b) ≥ α ∧R(b, c) ≥ α) ⇒ R(a, c) ≥ α , (2)

for any α > 0. Alternatively, transitivity can also be expressed in the fol-
lowing functional form

min(R(a, b), R(b, c)) ≤ R(a, c) . (3)

Note that on {0, 1}2 the minimum operation is nothing else but the Boolean
conjunction.

In the setting of fuzzy set theory, formulation (3) has led to the popular
notion of T -transitivity, where a t-norm T is used as a generalization of the
Boolean conjunction. A fuzzy relation R on A is an A2 → [0, 1] mapping
that expresses the degree of relationship between elements of A: R(a, b) = 0
means a and b are not related at all, R(a, b) = 1 expresses full relationship,
while R(a, b) ∈ ]0, 1[ indicates a partial degree of relationship only.

Definition 1 [29] A binary operation T : [0, 1]2 → [0, 1] is called a t-norm
if it satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(T (x, 1) = T (1, x) = x).
(ii) Monotonicity: T is increasing in each variable.
(iii) Commutativity: (∀(x, y) ∈ [0, 1]2)(T (x, y) = T (y, x)).
(iv) Associativity: (∀(x, y, z) ∈ [0, 1]3)(T (x, T (y, z)) = T (T (x, y), z)).

To any t-norm T corresponds a dual t-conorm S defined by

S(x, y) = 1− T (1− x, 1− y) . (4)

More formally, a t-conorm is a binary operation on [0, 1] which satisfies prop-
erties (ii)–(iv) above and has as neutral element 0. For a recent monograph
on t-norms and t-conorms, we refer to [21].

Definition 2 Let T be a t-norm. A fuzzy relation R on A is called T -
transitive if for any (a, b, c) ∈ A3 it holds that

T (R(a, b), R(b, c)) ≤ R(a, c) . (5)

The three main continuous t-norms are the minimum operator TM, the
algebraic product TP and the ÃLukasiewicz t-norm TL (defined by TL(x, y) =
max(x + y − 1, 0)). The smallest t-norm is the drastic product TD, which
is right-continuous only and is 0 everywhere up to the boundary condition
TD(x, 1) = TD(1, x) = x.
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2.2 Transitivity of reciprocal relations

Another class of A2 → [0, 1] mappings are the so-called reciprocal relations Q
satisfying

Q(a, b) + Q(b, a) = 1 , (6)

for any a, b ∈ A. For such relations, it holds in particular that Q(a, a) = 1/2.
Transitivity properties for reciprocal relations rather have the logical flavour
of expression (2). There exist various kinds of stochastic transitivity for
reciprocal relations [8,24]. For instance, a reciprocal relation Q on A is
called weakly stochastic transitive if for any (a, b, c) ∈ A3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ 1/2 , (7)

which corresponds to the choice of α = 1/2 in (2).
Next, let R be a complete ({0, 1}-valued) relation on A, which means

that max(R(a, b), R(b, a)) = 1 for any a, b ∈ A. Then R has an equivalent
{0, 1/2, 1}-valued reciprocal representation Q given by

Q(a, b) =





1 , if R(a, b) = 1 and R(b, a) = 0 ,

1/2 , if R(a, b) = R(b, a) = 1 ,

0 , if R(a, b) = 0 and R(b, a) = 1 .

Or in a more compact arithmetic form:

Q(a, b) =
1 + R(a, b)−R(b, a)

2
. (8)

One easily verifies that R is transitive if and only if its reciprocal represen-
tation Q satisfies, for any (a, b, c) ∈ A3:

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = max(Q(a, b), Q(b, c)) . (9)

Similarly, a weakly complete fuzzy relation R, i.e. one satisfying

R(a, b) + R(b, a) ≥ 1 ,

for any a, b ∈ A, can be transformed into a (non-equivalent, yet interesting)
reciprocal representation Q = P + I/2, with P and I the (fuzzy) strict
preference and indifference components of the fuzzy preference structure
(P, I, J) generated from R by means of TL [10,32]:

P (a, b) = TM(R(a, b), 1−R(b, a)) = 1−R(b, a) ,

I(a, b) = TL(R(a, b), R(b, a)) = R(a, b) + R(b, a)− 1 ,

J(a, b) = TL(1−R(a, b), 1−R(b, a)) = 0 .

Note that the corresponding expression for Q is formally the same as (8).
For an introduction to fuzzy preference structures, we refer to [9].
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3 Cycle-transitivity

3.1 Notations

Consider an arbitrary universe A. For a reciprocal relation Q on A, we write
qab := Q(a, b). For any (a, b, c) ∈ A3, let

αabc = min(qab, qbc, qca) ,

βabc = median(qab, qbc, qca) ,

γabc = max(qab, qbc, qca) .

(10)

It then obviously holds that

αabc ≤ βabc ≤ γabc , (11)

and also

αabc = αbca = αcab , βabc = βbca = βcab , γabc = γbca = γcab . (12)

On the other hand, the reciprocity of Q implies that

αcba = 1− γabc , βcba = 1− βabc , γcba = 1− αabc . (13)

3.2 Product-transitivity revisited

To point out a possible way of generalizing T -transitivity (for reciprocal
relations), we consider TP-transitivity for a reciprocal relation Q on A. For
any a, b, c ∈ A, there are six conditions to be satisfied, namely

qac qcb ≤ qab , qba qac ≤ qbc , qcb qba ≤ qca ,

qbc qca ≤ qba , qca qab ≤ qcb , qab qbc ≤ qac .

Since Q is reciprocal, these conditions can be expressed in terms of αabc,
βabc and γabc solely, as follows

(1− βabc)(1− γabc) ≤ αabc ,

(1− αabc)(1− γabc) ≤ βabc ,

(1− αabc)(1− βabc) ≤ γabc ,

βabc γabc ≤ 1− αabc ,

αabc γabc ≤ 1− βabc ,

αabc βabc ≤ 1− γabc .

(14)

The first three inequalities of (14) can be rewritten as

βabcγabc ≤ αabc + βabc + γabc − 1 ,

αabcγabc ≤ αabc + βabc + γabc − 1 ,

αabcβabc ≤ αabc + βabc + γabc − 1 .
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From (11) it follows that αabc βabc ≤ αabc γabc ≤ βabc γabc. Therefore only
the first inequality should be withheld as a condition for TP-transitivity.
Similarly, the last three inequalities of (14) can be rewritten as

αabc + βabc + γabc − 1 ≤ 1− (1− βabc)(1− γabc) ,

αabc + βabc + γabc − 1 ≤ 1− (1− αabc)(1− γabc) ,

αabc + βabc + γabc − 1 ≤ 1− (1− αabc)(1− βabc) .

From (11) it now follows that only the last inequality should be retained.
The six inequalities (14) are therefore equivalent to the double inequality

βabc γabc ≤ αabc + βabc + γabc − 1 ≤ 1− (1− αabc)(1− βabc) . (15)

The way we arrived at this double inequality immediately shows that if it
holds for (a, b, c) ∈ A3, then it also holds for all permutations of (a, b, c). A
direct proof of this claim, however, provides us with some further insights.
Let us denote the upper and lower bounds in (15) as u(αabc, βabc) and
l(βabc, γabc), respectively. We observe the following type of duality

l(βabc, γabc) = 1− u(1− γabc, 1− βabc) . (16)

Suppose (15) holds for (a, b, c), then (13) and (16) lead to

αcba + βcba + γcba − 1 = 1− (αabc + βabc + γabc − 1)
≥ 1− u(αabc, βabc)
= 1− u(1− γcba, 1− βcba) = l(βcba, γcba) .

Similarly, we obtain

αcba + βcba + γcba − 1 ≤ u(αcba, βcba) .

Hence, (15) also holds for (c, b, a).

3.3 Definition of cycle-transitivity

The simple formulation (15)–(16) of TP-transitivity for reciprocal relations
has been our source of inspiration for a new type of transitivity for reciprocal
relations. Let us denote ∆ = {(x, y, z) ∈ [0, 1]3 | x ≤ y ≤ z} and consider
a function U : ∆ → R, then, in analogy to (15), we could call a reciprocal
relation Q on A transitive w.r.t. U if for any a, b, c ∈ A it holds that

1−U(1−γabc, 1−βabc, 1−αabc) ≤ αabc+βabc+γabc−1 ≤ U(αabc, βabc, γabc) .

In case of TP-transitivity, the corresponding function UP is given by

UP(α, β, γ) = 1− (1− α)(1− β) = α + β − αβ . (17)
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The minimal requirement we impose is that the reciprocal representa-
tion Q of any transitive complete relation R given in (8) has this type of
transitivity. To that end, U should satisfy the following conditions:

U(0, 1/2, 1) ≥ 1/2 , U(1/2, 1/2, 1/2) ≥ 1/2 ,

U(0, 0, 1) ≥ 0 , U(0, 1, 1) ≥ 1 .
(18)

These conditions are for instance satisfied for any U ≥ median.
Similarly, a kind of maximal requirement could be to insist that the

only {0, 1/2, 1}-valued reciprocal relations that are transitive w.r.t. U are
the reciprocal representations of transitive complete relations. To that end,
U should satisfy the following additional conditions

U(0, 0, 0) < −1 or U(1, 1, 1) < 2 ,

U(0, 0, 1/2) < −1/2 or U(1/2, 1, 1) < 3/2 ,

U(0, 1/2, 1/2) < 0 or U(1/2, 1/2, 1) < 1 .

(19)

As this requirement would seriously limit the generality of our framework, it
will not be included in our basic definitions. However, it will be commented
upon where relevant.

The proposed double inequality actually restricts the possible values of
αabc, βabc and γabc in two consecutive steps. First, the lower bound should
not exceed the upper bound, and, second, if this is indeed not the case, then
the value αabc + βabc + γabc− 1 should be located between these bounds. In
order not to exclude any (αabc, βabc, γabc) a priori, we propose the following
definitions.

Definition 3 A function U : ∆ → R is called an upper bound function if it
satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;
(ii) for any (α, β, γ) ∈ ∆:

U(α, β, γ) + U(1− γ, 1− β, 1− α) ≥ 1 . (20)

The class of upper bound functions is denoted U .

Note that the definition of an upper bound function does not include any
monotonicity condition. The function L : ∆ → R defined by

L(α, β, γ) = 1− U(1− γ, 1− β, 1− α) (21)

is called the dual lower bound function of a given upper bound function U .
Inequality (20) then simply expresses that L ≤ U . Note that the conditions
U(0, 1/2, 1) ≥ 1/2 and U(1/2, 1/2, 1/2) ≥ 1/2 have been omitted from (18)
as they follow from (20). One easily verifies that UP belongs to U and
satisfies (19).
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Definition 4 A reciprocal relation Q on A is called cycle-transitive w.r.t.
an upper bound function U if for any (a, b, c) ∈ A3 it holds that

L(αabc, βabc, γabc) ≤ αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) , (22)

where L is the dual lower bound function of U .

Using the above terminology, the results of Subsection 3.2 can be rephrased
as follows: a reciprocal relation Q is TP-transitive if and only if it is cycle-
transitive w.r.t. UP. Due to the built-in duality, it still holds that if (22)
is true for some (a, b, c), then this is also the case for any permutation
of (a, b, c). In practice, it is therefore sufficient to check (22) for a single
permutation of any (a, b, c) ∈ A3. Alternatively, due to the same duality,
it is also sufficient to verify the right-hand inequality (or equivalently, the
left-hand inequality) for two permutations of any (a, b, c) ∈ A3 (not being
cyclic permutations of one another), e.g. (a, b, c) and (c, b, a).

Proposition 1 A reciprocal relation Q on A is cycle-transitive w.r.t. an
upper bound function U if for any (a, b, c) ∈ A3 it holds that

αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) . (23)

Note that a value of U(α, β, γ) equal to 2 will often be used to express that
for the given values there is no restriction at all (indeed, α + β + γ − 1 is
always bounded by 2). For two upper bound functions such that U1 ≤ U2,
it clearly holds that cycle-transitivity w.r.t. U1 implies cycle-transitivity
w.r.t. U2. It is clear that U1 ≤ U2 is not a necessary condition for the latter
implication to hold.

Two upper bound functions U1 and U2 will be called equivalent if for
any (α, β, γ) ∈ ∆ it holds that

α + β + γ − 1 ≤ U1(α, β, γ)

is equivalent to
α + β + γ − 1 ≤ U2(α, β, γ) .

Suppose, for instance, that the inequality α + β + γ − 1 ≤ U1(α, β, γ) can
be rewritten as

α ≤ h(β, γ) ,

then an equivalent upper bound function U2 is given by

U2(α, β, γ) = β + γ − 1 + h(β, γ) .

In this way, it is often possible to find an equivalent upper bound function
in only two of the variables α, β and γ.

A more general way of obtaining equivalent upper bound functions is
the following. For any µ > 0, the inequality

α + β + γ − 1 ≤ U(α, β, γ)
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is clearly equivalent to

α + β + γ − 1 ≤ U(α, β, γ)− (1− µ)(α + β + γ − 1)
µ

.

Hence, cycle-transitivity w.r.t. U is equivalent to cycle-transitivity w.r.t. Uµ

defined by

Uµ(α, β, γ) =
U(α, β, γ)− (1− µ)(α + β + γ − 1)

µ
. (24)

One easily verifies that Uµ ∈ U . Note that also the additional conditions (19)
are preserved under the above transformation.

3.4 Self-dual upper bound functions

If it happens that in (20) the equality holds for all (α, β, γ) ∈ ∆, i.e.

U(α, β, γ) + U(1− γ, 1− β, 1− α) = 1 , (25)

then the upper bound function U is said to be self-dual, since in that case it
coincides with its dual lower bound function L. Consequently, then also (22)
and (23) can only hold with equality. Furthermore, it holds that U(0, 0, 1) =
0 and U(0, 1, 1) = 1. Note that if U is self-dual, then also any upper bound
function Uµ defined in (24) is self-dual.

The simplest example of a self-dual upper bound function is the median,
i.e. UM(α, β, γ) = β, and further on we will prove that this is precisely
the upper bound function corresponding to TM-transitivity of reciprocal
relations, when reformulated in the framework of cycle-transitivity.

Another example of a self-dual upper bound function is the function UE

defined by
UE(α, β, γ) = αβ + αγ + βγ − 2αβγ . (26)

Cycle-transitivity w.r.t. UE of a reciprocal relation Q on A can also be
expressed as

αabc + βabc + γabc − 1 = αabcβabc + αabcγabc + βabcγabc − 2αabcβabcγabc ,

or, equivalently, as:

αijkβijkγijk = (1− αijk)(1− βijk)(1− γijk) .

It is then easy to see that cycle-transitivity w.r.t. UE is equivalent to the
concept of multiplicative transitivity [31]. Recall that a reciprocal relation
Q on A is called multiplicatively transitive if for any (a, b, c) ∈ A3 it holds
that

Q(a, c)
Q(c, a)

=
Q(a, b)
Q(b, a)

· Q(b, c)
Q(c, b)

.

Note that the cycle-transitive version is more appropriate as it avoids divi-
sion by zero.
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It is not difficult to characterize the subfamily of self-dual upper bound
functions that are polynomials. Indeed, introducing the new variables α′ =
α− 1/2, β′ = β − 1/2, γ′ = γ − 1/2, and the new function U ′ defined by

U ′(α′, β′, γ′) = U(α′ + 1/2, β′ + 1/2, γ′ + 1/2)− 1/2 ,

the self-duality of U becomes equivalent to

U ′(α′, β′, γ′) = −U ′(−γ′,−β′,−α′) ,

which should hold for all −1/2 ≤ α′ ≤ β′ ≤ γ′ ≤ 1/2. Using standard
algebraic manipulations we can show that the polynomial solutions of the
latter functional equation are given by

U ′(α′, β′, γ′) =
+∞∑

i,j,k=0

cijk(α′γ′)iβ′j
[
α′k + (−1)j+k+1γ′k

]
,

where the cijk are arbitrary (real) coefficients. Note that the latter expres-
sion not only defines self-dual polynomials, but also self-dual analytic func-
tions (in other words, the (triple) series converges for all −1/2 ≤ α′ ≤ β′ ≤
γ′ ≤ 1/2). Returning to the original variables, the polynomial (or analytic)
self-dual upper bound functions U are given by

U(α, β, γ) =
1
2

+
+∞∑

i,j,k=0

cijk(α− 1/2)i (β − 1/2)j (γ − 1/2)i

× [
(α− 1/2)k + (−1)j+k+1(γ − 1/2)k

]
, (27)

where the coefficients cijk are further restricted in order to ensure the con-
ditions U(0, 0, 1) = 0 and U(0, 1, 1) = 1.

By setting c010 = 1/2 and all other cijk to zero in (27), the self-dual up-
per bound function UM is retrieved, while choosing c110 = −2, c001 = c010 =
1/2 and all other cijk = 0, leads to the self-dual upper bound function UE .

4 Fuzzy transitivity as cycle-transitivity

4.1 Fuzzy transitivity

In this section, we reconsider the notion of T -transitivity. Instead of t-norms,
we consider the more general class of conjunctors.

Definition 5 A binary operation f : [0, 1]2 → [0, 1] is called a conjunctor if
it has the following properties:

(i) Its restriction to {0, 1}2 coincides with the Boolean conjunction.
(ii) Monotonicity: f is increasing in each variable.

The following definition generalizes Definition 2.
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Definition 6 Let f be a conjunctor. A fuzzy relation R on A is called f-
transitive if for any (a, b, c) ∈ A3 it holds that

f(R(a, b), R(b, c)) ≤ R(a, c) . (28)

Typical examples of conjunctors are binary operations on [0, 1] that satisfy
(ii) and have 1 as neutral element 1, i.e. f(x, 1) = f(1, x) = x for any
x ∈ [0, 1]. Such conjunctors are bounded from above by TM, i.e. f(x, y) ≤
min(x, y), and have 0 as absorbing element, i.e. f(x, 0) = f(0, x) = 0, for
any x ∈ [0, 1].

In this paper, we are mainly interested in two particular classes of con-
junctors with neutral element 1: the class of t-norms mentioned in Subsec-
tion 2.1, and the class of (quasi-)copulas, which just as t-norms, finds its
origin in the study of probabilistic metric spaces [29]. Where t-norms have
the additional properties of commutativity and associativity, quasi-copulas
have the 1-Lipschitz property, while copulas have the property of moderate
growth.

Definition 7 [1,18,25] A binary operation C : [0, 1]2 → [0, 1] is called a
quasi-copula if it satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(C(x, 1) = C(1, x) = x) .
(i’) Absorbing element 0: (∀x ∈ [0, 1])(C(x, 0) = C(0, x) = 0) .
(ii) Monotonicity: C is increasing in each variable.
(iii) 1-Lipschitz property: (∀(x1, x2, y1, y2) ∈ [0, 1]4)

(|C(x1, y1)− C(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|) .

If instead of (iii), C satisfies

(iv) Moderate growth: (∀(x1, x2, y1, y2) ∈ [0, 1]4)

((x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1)) ,

then it is called a copula.

Note that in case of a quasi-copula condition (i’) is superfluous. For a copula,
condition (ii) can be omitted (as it follows from (iv) and (i’)). As implied by
the terminology used, any copula is a quasi-copula, and therefore has the 1-
Lipschitz property; the opposite is, of course, not true. It is well known that
a copula is a t-norm if and only if it is associative; conversely, a t-norm is a
copula if and only if it is 1-Lipschitz. Finally, note that for any quasi-copula
C it holds that TL ≤ C ≤ TM.

4.2 Fuzzy transitivity as cycle-transitivity

A first immediate observation is the following proposition. Although recip-
rocal relations do not have a fuzzy interpretation, we may attempt to study
their f -transitivity. Indeed, f -transitivity of reciprocal relations is not a
void notion, as for instance the reciprocal relation Q on {a, b, c} defined by
Q(a, b) = Q(b, c) = Q(a, c) = 1 is f -transitive for any conjunctor f .
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Proposition 2 Let f be a commutative conjunctor such that f ≤ TM. A
reciprocal relation Q on A is f -transitive if and only if it is cycle-transitive
w.r.t. the upper bound function Uf defined by

Uf (α, β, γ) = min(α + β − f(α, β), β + γ − f(β, γ), γ + α− f(γ, α)) . (29)

Proof First of all, a tedious, yet simple verification shows that for any con-
junctor f the property f ≤ TM guarantees that the function Uf defined
in (29) belongs to U .

Consider a reciprocal relation Q on A and (a, b, c) ∈ A3. Assume e.g.
that qab = αabc, qbc = βabc and qca = γabc. The six inequalities of type (28),
guaranteeing f -transitivity, can be brought, by adding appropriate terms
to both sides of the inequalities, into the following form (also omitting the
indices abc):

f(1− γ, 1− β) + β + γ − 1 ≤ α + β + γ − 1 ,

f(1− α, 1− γ) + α + γ − 1 ≤ α + β + γ − 1 ,

f(1− β, 1− α) + α + β − 1 ≤ α + β + γ − 1 ,

α + β + γ − 1 ≤ −f(β, γ) + β + γ ,

α + β + γ − 1 ≤ −f(γ, α) + α + γ ,

α + β + γ − 1 ≤ −f(α, β) + α + β .

Similarly as for TP-transitivity, these six inequalities are equivalent to the
double inequality

Lf (α, β, γ) ≤ α + β + γ − 1 ≤ Uf (α, β, γ) ,

with Uf given by (29) and Lf the dual lower bound function defined by (21).
Due to the commutativity of f , any other case, such as qab = αabc, qbc = γabc

and qca = βabc, leads to the same result. ut
Note that in general the additional conditions (19) are not satisfied by an
upper bound function of type (29). This is only the case when f(1/2, 1/2) >
0, a condition that is e.g. not fulfilled for f = TL.

4.3 The case of commutative quasi-copulas and copulas

Proposition 2 does not sufficiently emphasize the relevance of the concept
of cycle-transitivity. It would be interesting to establish sufficient conditions
bringing the upper bound function Uf in a simpler form, in analogy to the
result obtained for TP.

Proposition 3 Let f be a commutative conjunctor such that f ≤ TM. If f
is 1-Lipschitz, then a reciprocal relation Q on A is f -transitive if and only
if it is cycle-transitive w.r.t. the upper bound function Uf defined by

Uf (α, β, γ) = α + β − f(α, β) . (30)
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Proof First, we observe that due to the monotonicity and commutativity
of f , the 1-Lipschitz property of f can be stated equivalently as

y − f(x, y) ≤ z − f(x, z) , (31)

for any x and any y ≤ z.
In view of Proposition 2, it is sufficient to show that

min(α + β − f(α, β), β + γ − f(β, γ), γ + α− f(γ, α)) = α + β − f(α, β) ,

for any (α, β, γ) ∈ ∆. As a double application of (31) leads to

β − f(α, β) ≤ γ − f(γ, α)

and
α− f(α, β) ≤ γ − f(β, γ) ,

the proposition holds indeed. ut
Let us characterize the upper bound functions Uf of the form (30) that

are self-dual upper bound functions.

Proposition 4 The minimum operator TM is the only 1-Lipschitz commu-
tative conjunctor f ≤ TM such that the associated upper bound function Uf

is self-dual.

Proof The self-dual upper bound functions of the form (30) are character-
ized by the equality

α + β − f(α, β) + 1− γ + 1− β − f(1− γ, 1− β) = 1 ,

for any (α, β, γ) ∈ ∆. Rewriting this equality in the form

f(α, β) + f(1− γ, 1− β) = α + (1− γ) ,

and taking into account that f ≤ TM, the only function f that identically
satisfies this equality is f = TM. ut
Note that the corresponding (self-dual) upper bound function is then simply
given by UM(α, β, γ) = α + β −min(α, β) = β, as announced earlier. If we
replace the condition f ≤ TM in Proposition 3 by the stronger condition (in
the given context) that f should have as neutral element 1, then we are in
fact dealing with a commutative quasi-copula.

Corollary 1 Let C be a commutative quasi-copula. A reciprocal relation Q
on A is C-transitive if and only if it is cycle-transitive w.r.t. the upper bound
function UC defined by

UC(α, β, γ) = α + β − C(α, β) . (32)

In case of a copula, the operation in (32) is known as the dual of the cop-
ula [25].
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Corollary 2 Let C be a commutative copula. A reciprocal relation Q on
A is C-transitive if and only if it is cycle-transitive w.r.t. the upper bound
function UC defined by

UC(α, β, γ) = C̃(α, β) , (33)

where

C̃(α, β) = α + β − C(α, β) (34)

is the dual of the copula C.

Note that besides the dual of a copula, one also defines the co-copula C∗

of a copula C by

C∗(x, y) = 1− C(1− x, 1− y) , (35)

and the survival copula Ĉ associated to the copula C by

Ĉ(x, y) = x + y − 1 + C(1− x, 1− y) . (36)

Neither the dual C̃, nor the co-copula C∗ of a copula C is a copula [22]; on
the other hand, the survival copula Ĉ associated to C is a copula.

Using this terminology, the dual lower bound function LC can be written
compactly as

LC(α, β, γ) = 1− UC(1− γ, 1− β, 1− α)
= 1− C̃(1− γ, 1− β) = Ĉ(γ, β) .

4.4 The case of t-norms

Corollary 2 applies in particular to t-norms that are copulas as well. Many
parametric families of t-norms contain a subfamily of copulas [21]. On the
other hand, there also exist lists of parametric families of copulas, most of
them containing a parametric subfamily of t-norms [25].

One of the most important parametric t-norm families is the Frank fam-
ily (TF

λ )λ∈[0,∞] [15], which turns out to be also a family of copulas. For
λ ∈ ]0, 1[∪]1,∞[, the Frank t-norm TF

λ is defined by

TF
λ (x, y) = logλ

(
1 +

(λx − 1)(λy − 1)
λ− 1

)
. (37)

As limit cases, one obtains TM (λ → 0), TP (λ → 1) and TL (λ →∞).
Although they appear to be quite technical, the Frank t-norms are im-

portant solutions of an often encountered functional equation. To that end,
we first recall the notion of an ordinal sum of t-norms [21].
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Proposition 5 Consider a countable family (Tα)α∈A of t-norms and a cor-
responding family (]aα, eα[)α∈A of non-empty, pairwise disjoint open subin-
tervals of [0, 1]. The binary operation T on [0, 1] defined by

T (x, y) =





aα + (eα − aα)Tα

(
x− aα

eα − aα
,

y − aα

eα − aα

)
, if (x, y) ∈ [aα, eα]2 ,

min(x, y) , otherwise.

is a t-norm, and is called the ordinal sum of the summands 〈aα, eα, Tα〉,
α ∈ A.

Ordinal sums of Frank t-norms were shown to be the only t-norms T
solving the functional equation

T (x, y) + S(x, y) = x + y

for some t-conorm S. In particular, when T = TF
λ this t-conorm is nothing

else but the Frank t-conorm SF
λ which coincides with the dual t-conorm of

TF
λ in the sense of (4):

SF
λ (x, y) = 1− TF

λ (1− x, 1− y) . (38)

In the latter case, Corollary 2 can be rephrased as follows.

Proposition 6 A reciprocal relation Q on A is TF
λ -transitive if and only if

it is cycle-transitive w.r.t. the upper bound function UF
λ defined by

UF
λ (α, β, γ) = SF

λ (α, β) . (39)

Note that due to (38), the dual lower bound function LF
λ is given by

LF
λ (α, β, γ) = TF

λ (β, γ) .

From Proposition 6 we obtain the following special cases.

(a) As mentioned twice before, a reciprocal relation Q is TM-transitive if and
only if it is cycle-transitive w.r.t. the self-dual upper bound function UM

defined by
UM(α, β, γ) = max(α, β) = β . (40)

Hence, for a TM-transitive reciprocal relation Q it must hold that αabc +
βabc + γabc− 1 = βabc, or equivalently, αabc + γabc = 1, for any (a, b, c) ∈
A3.

(b) As proven in detail, a reciprocal relation Q is TP-transitive if and only
if it is cycle-transitive w.r.t. the upper bound function UP defined by

UP(α, β, γ) = α + β − αβ . (41)
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(c) A reciprocal relation Q is TL-transitive if and only if it is cycle-transitive
w.r.t. the upper bound function UL defined by

UL(α, β, γ) = min(α + β, 1) .

Hence, for a TL-transitive reciprocal relation Q it must hold that αabc +
βabc+γabc−1 ≤ min(αabc+βabc, 1), for any (a, b, c) ∈ A3. If αabc+βabc <
1, then this inequality is trivially fulfilled. Therefore, a reciprocal relation
Q is TL-transitive if and only if it is cycle-transitive w.r.t. the simpler
equivalent upper bound function U ′

L defined by

U ′
L(α, β, γ) = 1 . (42)

Note that the same equivalence holds for the less elegant equivalent
upper bound function U ′′

L defined by

U ′′
L(α, β, γ) =

{
1 , if α + β ≥ 1 ,

2 , if α + β < 1 .
(43)

Expressions (40)–(42) nicely illustrate that TM-transitivity implies TP-transitivity
and that TP-transitivity implies TL-transitivity.

5 Stochastic transitivity as cycle-transitivity

5.1 Stochastic transitivity

In this section, we propose a general notion of stochastic transitivity and
show when and how it fits into the framework of cycle-transitivity.

Definition 8 Let g be an increasing [1/2, 1]2 → [0, 1] mapping. A reciprocal
relation Q on A is called g-stochastic transitive if for any (a, b, c) ∈ A3 it
holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) . (44)

This definition includes many well-known types of stochastic transitivity.
Indeed, g-stochastic transitivity is known as

(i) strong stochastic transitivity when g = max [24];
(ii) moderate stochastic transitivity when g = min [24];
(iii) weak stochastic transitivity when g = 1/2 [24];
(iv) λ-transitivity, with λ ∈ [0, 1], when g = λ max+(1− λ) min [2].

It is clear that strong stochastic transitivity implies λ-transitivity, which im-
plies moderate stochastic transitivity, which, in turn, implies weak stochas-
tic transitivity.
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5.2 Stochastic transitivity as cycle-transitivity

Proposition 7 Let g be a commutative, increasing [1/2, 1]2 → [0, 1] map-
ping such that g(1/2, x) ≤ x for any x ∈ [1/2, 1]. A reciprocal relation Q
on A is g-stochastic transitive if and only if it is cycle-transitive w.r.t. the
upper bound function Ug defined by

Ug(α, β, γ) =





β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2 ,

min(α + β − g(α, β), β + γ − g(β, γ),
γ + α− g(γ, α)) , if α ≥ 1/2

2 , if β < 1/2 .
(45)

Proof First of all, again a tedious, yet simple verification shows that for a
function g with the given properties the corresponding function Ug defined
in (45) belongs to U . Essential is the additional condition g(1/2, x) ≤ x.

Consider a reciprocal relation Q on A and (a, b, c) ∈ A3. If βabc ≥ 1/2,
then also γabc ≥ 1/2 and at least two of the three elements qab, qbc and
qac are greater than or equal to 1/2. In this case, g-stochastic transitivity
requires that 1 − αabc ≥ g(βabc, γabc). If αabc < 1/2, this inequality is the
only one that must hold for (a, b, c) (and cyclic permutations of it) and
g-stochastic transitivity turns out to be equivalent to the condition:

αabc + βabc + γabc − 1 ≤ βabc + γabc − g(βabc, γabc) .

However, if αabc ≥ 1/2, then two more inequalities must hold, namely
1 − γabc ≥ g(αabc, βabc) and 1 − βabc ≥ g(αabc, γabc), and the three in-
equalities together yield the condition αabc + βabc + γabc − 1 ≤ min(αabc +
βabc− g(αabc, βabc), βabc + γabc− g(βabc, γabc), γabc + αabc− g(γabc, αabc)). If
βabc < 1/2, there is no upper bound for αabc +βabc + γabc− 1, which means
that we can just put 2. Summarizing, we have shown that g-stochastic tran-
sitivity can be reformulated as cycle-transitivity w.r.t. the upper bound
function Ug. ut

Note that in general the additional conditions (19) are not satisfied by an
upper bound function of type (45). This is only the case when g(1/2, 1/2) >
0 or g(1/2, 1) > 1/2.

As in the case of fuzzy transitivity, we will establish sufficient conditions
on the function g which allow to bring the upper bound function Ug in
a simpler form. A first proposition restricts the range of g to the interval
[1/2, 1]. Cycle-transitivity w.r.t. Ug then always implies weak stochastic
transitivity. Also, the additional conditions (19) are then trivially fulfilled.
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Proposition 8 Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1] map-
ping such that g(1/2, x) ≤ x for any x ∈ [1/2, 1]. A reciprocal relation Q
on A is g-stochastic transitive if and only if it is cycle-transitive w.r.t. the
upper bound function Ug defined by

Ug(α, β, γ) =





β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(46)

Proof Consider a reciprocal relation Q on A and (a, b, c) ∈ A3. In view
of Proposition 7, we only need to consider the case αabc ≥ 1/2 and we
know that in this case g-stochastic transitivity requires that 1 − αabc ≥
g(βabc, γabc), 1 − βabc ≥ g(αabc, γabc) and 1 − γabc ≥ g(αabc, βabc). Since g
takes values in [1/2, 1], this can only hold if αabc ≤ 1/2, βabc ≤ 1/2 and
γabc ≤ 1/2. Since αabc ≥ 1/2 it then follows that αabc = βabc = γabc = 1/2.
An equivalent way of arriving at this single possibility is by requiring that
αabc + βabc + γabc − 1 ≤ 1/2 in case αabc ≥ 1/2. ut
From Proposition 8 we obtain as special cases:

(a) A reciprocal relation Q is strongly stochastic transitive if and only if it
is cycle-transitive w.r.t. the upper bound function Uss defined by

Uss(α, β, γ) =





β , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(47)

(b) A reciprocal relation Q is moderately stochastic transitive if and only if
it is cycle-transitive w.r.t. the upper bound function Ums defined by

Ums(α, β, γ) =





γ , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(48)

(c) A reciprocal relation Q is weakly stochastic transitive if and only if it is
cycle-transitive w.r.t. the upper bound function Uws defined by

Uws(α, β, γ) =





β + γ − 1/2 , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(49)

(d) A reciprocal relation Q is λ-transitive, with λ ∈ [0, 1], if and only if it is
cycle-transitive w.r.t. the upper bound function Uλ defined by

Uλ(α, β, γ) =





λβ + (1− λ)γ , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(50)
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A final simplification, eliminating the special case α = 1/2 in (46), is
obtained by requiring g to have as neutral element 1/2, i.e. g(1/2, x) =
g(x, 1/2) = x for any x ∈ [1/2, 1].

Proposition 9 Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1] map-
ping with neutral element 1/2. A reciprocal relation Q on A is g-stochastic
transitive if and only if it is cycle-transitive w.r.t. the upper bound Ug de-
fined by

Ug(α, β, γ) =

{
β + γ − g(β, γ) , if β ≥ 1/2 ,

2 , if β < 1/2 .
(51)

Proof Consider a reciprocal relation Q on A and (a, b, c) ∈ A3. As in the
proof of Proposition 8, we only need to consider the case αabc ≥ 1/2 in
which g-stochastic transitivity is equivalent to αabc = βabc = γabc = 1/2.
We need to show that an equivalent way of arriving at this single possibility,
knowing that g has neutral element 1/2, is by requiring in this case that
αabc +βabc +γabc−1 ≤ βabc +γabc−g(βabc, γabc), or equivalently, 1−αabc ≥
g(βabc, γabc). Indeed, since g has neutral element 1/2, it holds that g ≥ max,
and we must have that 1−αabc ≥ γabc, which, given αabc ≥ 1/2, only occurs
when αabc = γabc = 1/2, whence also βabc = 1/2. ut

This proposition implies in particular that strong stochastic transitivity
(g = max) is equivalent to cycle-transitivity w.r.t. the simplified upper
bound function U ′

ss defined by

U ′
ss(α, β, γ) =

{
β , if β ≥ 1/2 ,

2 , if β < 1/2 .
(52)

Note that g-stochastic transitivity w.r.t. a function g ≥ max always implies
strong stochastic transitivity. This means that any reciprocal relation that
is cycle-transitive w.r.t. an upper bound function Ug of the form (51) is at
least strongly stochastic transitive.

Comparing (40) and (42) with (52) and (48), it is clear that TM-transi-
tivity implies strong stochastic transitivity and that moderate stochastic
transitivity implies TL-transitivity.

5.3 Strong stochastic transitivity revisited

The purpose of this subsection is to show that strong stochastic transitivity
can also be cast in the framework of fuzzy transitivity. To that aim, we
consider the ordinal sum Tss = {([0, 1

2 ], TD), ([ 12 , 1], TM)}, which is given
explicitly by

Tss(x, y) =

{
min(x, y) , if max(x, y) ≥ 1/2 ,

0 , if max(x, y) < 1/2 .
(53)
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This t-norm is not continuous, and therefore surely not a copula. Note that
it is situated between TL and TM.

According to Proposition 2, Tss-transitivity is equivalent to cycle-transi-
tivity w.r.t. the upper bound function UTss (obtained by putting f = Tss

in (29)), of which a simplified expression is given by

UTss
(α, β, γ) =





β , if β ≥ 1/2 ,

min(α + β, γ) , if β < 1/2 ≤ γ ,

α + β , if γ < 1/2 .

However, one easily verifies that α + β + γ − 1 ≤ min(α + β, γ) is trivially
fulfilled when β < 1/2 ≤ γ and γ < 1/2. The inequality α+β+γ−1 ≤ α+β
is even always true. Hence, an equivalent upper bound function is given by

U ′
Tss

(α, β, γ) =

{
β , if β ≥ 1/2 ,

2 , if β < 1/2 .
(54)

Comparing (52) and (54) shows that, for reciprocal relations, strong stochas-
tic transitivity is equivalent to T -transitivity with respect to the non-conti-
nuous t-norm Tss.

5.4 Isostochastic transitivity

In Subsection 3.4, we have derived the most general polynomial self-dual
upper bound functions. An alternative way of defining a family of self-dual
upper bound functions goes as follows.

Proposition 10 Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1]
mapping with neutral element 1/2. It then holds that any ∆ → R function
U of the form

Us
g (α, β, γ) =

{
β + γ − g(β, γ) , if β ≥ 1/2 ,

α + β − 1 + g(1− β, 1− α) , if β < 1/2 ,
(55)

is a self-dual member of U .

Proof When β > 1/2, it easily follows that the dual lower bound func-
tion L(α, β, γ) equals β + γ − g(β, γ), and coincides with the upper bound
function. When β = 1/2, both functions coincide provided that the equality

1/2 + γ − g(1/2, γ) = α− 1/2 + g(1/2, 1− α)

holds for any α ≤ 1/2 and γ ≥ 1/2. This follows from the fact that 1/2
is the neutral element of g. Finally, it should hold that U(0, 0, 1) = 0 and
U(0, 1, 1) = 1. This is guaranteed by the fact that 1 is the absorbing element
of g. Indeed, g(x, 1) ≥ g(1/2, 1) = 1, and hence g(x, 1) = 1. This concludes
the proof that U is a self-dual member of U . ut



Cyclic Evaluation of Transitivity of Reciprocal Relations 21

Note that the function g in Proposition 10 has the same properties as
the function g in Proposition 9. Of course, the upper bound function Us

g

also satisfies the additional conditions (19). Furthermore, it is immediately
clear that cycle-transitivity w.r.t. an upper bound function of the form Us

g

always implies strong stochastic transitivity.
Many of the polynomial self-dual upper bound functions can be recast in

the form (55). For instance, the self-dual upper bound function UM (which
characterizes TM-transitivity) is of the form (55) with g = max. As a second
example, let us reconsider the case of the self-dual upper bound function
UE(α, β, γ) = αβ + αγ + βγ − 2αβγ. Similarly as in Remark 1, solving α
(resp. γ) from the equation α + β + γ − 1 = αβ + αγ + βγ − 2αβγ and
substituting the solution in the expression for UE(α, β, γ) in case β ≥ 1/2
(resp. β ≤ 1/2), we obtain the equivalent self-dual upper bound function

U ′
E(α, β, γ) =





β + γ − βγ

βγ + (1− β)(1− γ)
, if β ≥ 1/2 ,

α + β − 1 +
(1− α)(1− β)

αβ + (1− α)(1− β)
, if β < 1/2 ,

(56)

which is of the form (55) with g defined by

g(x, y) =
x y

x y + (1− x)(1− y)
. (57)

As self-dual upper bound functions typically turn inequalities into equal-
ities, the following proposition does not come as a surprise. It shows that
cycle-transitivity w.r.t. an upper bound function of type (55) can be seen as
a variant of g-stochastic transitivity. The proof is similar to that of Propo-
sitions (7)–(9).

Proposition 11 A reciprocal relation Q on A is cycle-transitive w.r.t. a
self-dual upper bound function of type Us

g if and only if for any (a, b, c) ∈ A3

it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = g(Q(a, b), Q(b, c)) . (58)

The reciprocal relation Q will also be called isostochastic transitive w.r.t. g,
or shortly, g-isostochastic transitive.

In particular, a reciprocal relation Q is TM-transitive if and only if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = max(Q(a, b), Q(b, c)) ,

for any (a, b, c) ∈ A3. Note that this is formally the same as (9) with the
difference that in the latter case Q was only {0, 1/2, 1}-valued.

Note that the properties imposed on g in Propositions 9 and 10 are very
close to the defining properties of t-conorms. Indeed, although associativity
is not explicitly required, it follows quite naturally. Consider for instance
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a g-isostochastic transitive reciprocal relation Q such that Q(a, b) ≥ 1/2,
Q(b, c) ≥ 1/2 and Q(c, d) ≥ 1/2. Then it holds that

Q(a, d) = g(Q(a, b), Q(b, d)) = g(Q(a, b), g(Q(b, c), Q(c, d)))

and

Q(a, d) = g(Q(a, c), Q(c, d)) = g(g(Q(a, b), Q(b, c)), Q(c, d)) ,

whence at least for the triplet (Q(a, b), Q(b, c), Q(c, d)) the function g is
associative. Adding (full) associativity makes g into a t-conorm on [1/2, 1],
or after appropriate rescaling, into a usual t-conorm on [0, 1].

Proposition 12 If g is a commutative, associative, increasing [1/2, 1]2 →
[1/2, 1] mapping with neutral element 1/2, then the [0, 1]2 → [0, 1] mapping
Sg defined by

Sg(x, y) = 2g

(
1 + x

2
,
1 + y

2

)
− 1

is a t-conorm.

Proof One easily verifies that since g is increasing, associative and commu-
tative, also Sg is increasing, associative and commutative. Furthermore, Sg

has 0 as neutral element since

Sg(0, x) = 2g(1/2, (1 + x)/2)− 1 = (1 + x)− 1 = x ,

for any x ∈ [0, 1]. ut

The two examples of self-dual upper bound functions given above fall in
the latter category. For the self-dual upper bound function U ′

E in (56), the
associated t-conorm SE is given by

SE(x, y) =
x + y

1 + xy
, (59)

which belongs to the parametric Hamacher t-conorm family, and is the co-
copula of the Hamacher t-norm with parameter value 2 [21].

6 Conclusion

In this paper, we have presented a new and general framework for study-
ing the transitivity of reciprocal relations. The key feature is the unortho-
dox evaluation: triangles are visited in a cyclic manner, while ordering the
weights encountered. We have shown how various types of fuzzy and stochas-
tic transitivity can be generalized and cast into the new framework. In-
teresting connections have been laid bare, while new types of transitivity
have been proposed, in particular those related to self-dual upper bound
functions. Operators common to both fields of fuzzy logic and probabilistic
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metric spaces, such as t-norms, t-conorms, commutative quasi-copulas, etc.,
have come to the front naturally.

In upcoming work, we will describe in detail the role of the cycle-
transitivity concept in the pairwise comparison of random variables, esta-
blishing a variety of alternatives to stochastic dominance. In that case, upper
bound functions of the type U(α, β, γ) = β+γ−TF

λ (β, γ), which are neither
an instance of fuzzy transitivity, nor of stochastic transitivity, will turn out
to play a prominent role. Note that these upper bound functions do not
satisfy the last condition in (19).
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