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Abstract

We introduce three variants of a symmetric matrix game corresponding to three
ways of comparing two partitions of a fixed integer (σ) into a fixed number (n)
of parts. In the random variable interpretation of the game, each variant depends
on the choice of a copula that binds the marginal uniform cumulative distribution
functions (cdf) into the bivariate cdf. The three copulas considered are the product
copula TP and the two extreme copulas, i.e. the minimum copula TM and the
ÃLukasiewicz copula TL. The associated games are denoted as the (n, σ)P, (n, σ)M
and (n, σ)L games. In the present paper, we characterize the optimal strategies of
the (n, σ)M and (n, σ)L games and compare them to the optimal strategies of the
(n, σ)P games. It turns out that the characterization of the optimal strategies is
completely different for each game variant.

Key words: Matrix game, Optimal strategy, Partition theory, Copula,
Probabilistic relation

1 Description of the games

1.1 Preliminary concepts

Consider a collection {X1, X2, . . . , Xm} of discrete random variables that are
uniformly distributed on integer multisets. Any two random variables Xi and
Xj can be statistically compared, yielding the probabilistic relation Q = [qij]
generated by the collection, defined by [2,4]

qij = Prob{Xi > Xj}+
1

2
Prob{Xi = Xj} . (1)

Preprint submitted to Elsevier Science 27 June 2009



Note that qij denotes the winning probability of Xi w.r.t. Xj. The term prob-
abilistic relation refers to the property that qij + qji = 1, for any i and j, in
particular qii = 1/2 for any i.

In the present paper, the random variables are uniformly distributed on mul-
tisets of n strictly positive integers summing up to σ, where n and σ are given
fixed numbers. Each element of the multiset therefore has the same probabil-
ity 1/n. In partition theory, an ordered multiset of n strictly positive integers
summing up to σ is known as a partition of σ into n parts. Throughout this
paper, we will maintain the latter terminology.

Definition 1 The n-tuple π = (i1, i2, . . . , in) consisting of n strictly positive
integers ordered nondecreasingly and with collective sum equal to σ, is called
a partition of σ into n parts. We will denote this type of partition by an (n, σ)
partition.

The integers composing a partition are called the parts of that partition.
Note that in partition theory, the parts are usually ordered nonincreasingly.
Throughout this paper, when considering an (n, σ) partition π1, resp. π2, the
parts will be denoted as (i1, i2, . . . , in), resp. (i′1, i

′
2, . . . , i

′
n) (the primes distin-

guishing partition π2 from π1). It is sometimes helpful to use a notation that
makes explicit the number of times a particular integer appears in a partition.
We use the same notation as in partition theory, known as the multiplicity
representation of the partition.

Definition 2 The multiplicity representation of an (n, σ) partition π is given
by (1t12t23t3 . . .) in which ti denotes the number of times i appears in the
partition π. When ti = 0 the entry iti can be omitted.

For the multiplicity representation (1t12t23t3 . . .) of a given (n, σ) partition π
it clearly holds that 0 ≤ ti ≤ n,

∑
i>0 ti = n and

∑
i>0 iti = σ.

In the next subsection, we will define three variants of the same game. The
payoff matrix of this game, needed for determining the corresponding optimal
strategies, is completely determined by the probabilistic relation generated by
the collection of random variables. This probabilistic relation depends upon
the copula used for coupling the random variables.

It is well known that for discrete random variables Xi and Xj the probability
pXi,Xj

(k, l) that Xi takes value k and Xj takes value l, can be obtained from
the joint cumulative distribution function FXi,Xj

as follows:

pXi,Xj
(k, l) = FXi,Xj

(k, l)+FXi,Xj
(k−1, l−1)−FXi,Xj

(k, l−1)−FXi,Xj
(k−1, l) .

Sklar’s theorem [7] says that if a joint cumulative distribution function FXi,Xj
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has marginals FXi
and FXj

, then there exists a copula C such that for all x, y:

FXi,Xj
(x, y) = C(FXi

(x), FXj
(y)) . (2)

On the other hand, if C is a copula and FXi
and FXj

are cumulative dis-
tribution functions, then the function defined by (2) is a joint cumulative
distribution function with marginals FXi

and FXj
. Let us recall [5,6] that a

copula is a binary operation C : [0, 1]2 → [0, 1] that has neutral element 1 and
absorbing element 0 and that satisfies the property of moderate growth: for
any (x1, x2, y1, y2) ∈ [0, 1]4

(x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1) .

All copulas are situated between the ÃLukasiewicz copula TL(x, y) = max(0, x+
y − 1) and the minimum copula TM(x, y) = min(x, y).

1.2 The three game variants

We consider three variants of the same game, played between two players
who want to maximize their individual profit. The game is therefore a non-
cooperative game. The strategies for both players are the (n, σ) partitions,
with n and σ fixed before the game begins. As already mentioned, with each
(n, σ) partition πi we let correspond a random variable Xi that is uniformly
distributed on the partition parts. The payoff matrix for player 1 is then given
by A = [aij], where aij = qij − 1/2 and qij is given by (1). As Q = [qij] is
a probabilistic relation, it holds that aij = −aji and the game therefore is a
symmetric matrix game. For such games, it holds that the payoff in a saddle
point is zero and it is well known that the optimal strategies of a matrix
game are the strategies occurring in a saddle point. When verifying that some
strategy πi is optimal in the games discussed in this paper, it therefore suffices
to verify that qij ≥ 1/2, for all strategies πj.

The three game variants differ from each other in the use of a different copula
to couple pairwisely the random variables. The connection to copulas will be
shown in the next subsection. For two (n, σ) partitions πi = (i1, . . . , in) and
πj = (j1, . . . , jn):

(i) the first game variant defines qij as

qP
ij =

#{(k, l) | ik > jl}
n2

+
#{(k, l) | ik = jl}

2n2
, (3)

(ii) the second game variant defines qij as

qM
ij =

#{k | ik > jk}
n

+
#{k | ik = jk}

2n
, (4)
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(iii) and the third game variant defines qij as

qL
ij =

#{k | ik > jn−k+1}
n

+
#{k | ik = jn−k+1}

2n
. (5)

One can verify that Q = [qij] is, in all three game variants, a probabilistic
relation. The first (second, third) game variant is denoted as an (n, σ)P game
((n, σ)M game, (n, σ)L game). Here, P refers to the product copula TP, M to
the minimum copula TM and L to the ÃLukasiewicz copula TL, which are the
respective copulas used for coupling the random variables [6].

Consider e.g. the (4, 16) partitions π1 = (1, 2, 5, 8) and π2 = (2, 3, 5, 6). Fig-
ure 1 shows graphically, for each considered game variant, which parts of the
partitions have to be compared. We obtain qP

12 = (0+0.5+2.5+4)/16 = 7/16,
qM
12 = 0 + 0 + 1/8 + 1/4 = 3/8 and qL

12 = 0 + 0 + 1/4 + 1/4 = 1/2. When it is
better suited to explicitly mention the partitions defining qij, we will use the
notation Qπi,πj

. We say that an (n, σ) partition πi wins, resp. loses, from an
(n, σ) partition πj if Qπi,πj

> 1/2, resp. Qπi,πj
< 1/2.
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Fig. 1. The three game types for a specific example.

In the last two sections of this paper, the optimal strategies of the (n, σ)M
and the (n, σ)L games are laid bare. Both sections start with a subsection that
bundles the results, after which a subsection follows in which these results
are proven. For the sake of completeness, the optimal strategies of the (n, σ)P
game, which were already obtained by the present authors in [3], are presented
in the next section. We end the present section with a proof of the connection
between the probabilistic relation (4), resp. (5), and the copula TM, resp. TL.

1.3 Connection with the extreme copulas

For discrete random variables, equation (1), defining qij, can be restated as

qij =
∑

k>l

pXi,Xj
(k, l) +

1

2

∑

k=l

pXi,Xj
(k, l) . (6)

Assume now that the r.v. Xi, resp. Xj, with cumulative distribution function
FXi

, resp. FXj
, and probability mass function pXi

, resp. pXj
, correspond to
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a multiset (i1, i2, . . . , in), resp. (j1, j2, . . . , jn), the elements of the multisets
ordered nondecreasingly and each element of the multiset having probability
1/n. We first consider the probabilistic relation when using the copula TM. It
then holds that

pM
Xi,Xj

(k, l) = min(FXi
(k), FXj

(l)) + min(FXi
(k − 1), FXj

(l − 1))

−min(FXi
(k), FXj

(l − 1))−min(FXi
(k − 1), FXj

(l)) ,

which is equivalent to:

pM
Xi,Xj

(k, l) =





0 , if FXi
(k) ≤ FXj

(l − 1) ∨ FXj
(l) ≤ FXi

(k − 1) ,

min(FXi
(k), FXj

(l))−max(FXi
(k − 1), FXj

(l − 1))

, otherwise .

As each element in the multiset has probability 1/n, the first line of the above
expression is equivalent to saying that when #{k | ik = i ∧ jk = j} = 0, it
holds that pM

Xi,Xj
(k, l) = 0. The second line is then equivalent to saying that

when #{k | ik = i ∧ jk = j} = f > 0, it holds that pM
Xi,Xj

(k, l) = f/n.
Using (6), definition (4) now follows immediately.

Secondly, we consider the copula TL, and obtain:

pL
Xi,Xj

(k, l) =

max(FXi
(k) + FXj

(l)− 1, 0) + max(FXi
(k − 1) + FXj

(l − 1)− 1, 0)

−max(FXi
(k) + FXj

(l − 1)− 1, 0)−max(FXi
(k − 1) + FXj

(l)− 1, 0) ,

which is equivalent to:

pL
Xi,Xj

(k, l) =





0 , if FXi
(k) ≤ 1− FXj

(l) ∨ 1− FXj
(l − 1) ≤ FXi

(k − 1) ,

min(FXi
(k), 1− FXj

(l − 1))−max(FXi
(k − 1), 1− FXj

(l))

, otherwise .

The first line of the above expression is equivalent to demanding that when
#{k | ik = i∧ jn+k−1 = j} = 0, it holds that pL

Xi,Xj
(k, l) = 0. The second part

is then equivalent to saying that when #{k | ik = i ∧ jn+k−1 = j} = f > 0, it
holds that pL

Xi,Xj
(k, l) = f/n. Using (6), definition (5) follows immediately.

2 Optimal strategies for (n, σ)P games

For the proofs of the statements in this section we refer to [3].
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Theorem 3 An (n, σ)P game has at least one optimal strategy if and only if
one of the following six mutually exclusive conditions is satisfied:

(i) n ≤ 2
(ii) (n, σ) = (3, 7)
(iii) (n, σ) = (3, 8)
(iv) (n, σ) = (2l, 4l + 1), l > 1
(v) n > 2 and there exist a, b, k ∈ N such that





n = (a + b) k − b

σ = n k
(7)

(vi) n > 2 and there exist a, b, k ∈ N such that





n = (a + b) k

σ = (n + b) k

a 6= 0 ∧ b 6= 0

(8)

Proposition 4

(1) The (1, σ)P game: the unique strategy (σ) is optimal.
(2) The (2, σ)P game: all bσ

2
c strategies are optimal.

(3) The (3, 7)P game: (1132) is the only optimal strategy.
(4) The (3, 8)P game: (113141) is the only optimal strategy.
(5) The (n, n)P game: the unique strategy (1n) is optimal.
(6) The (2n, 4n + 1)P game, n > 1: (1n−1213n) is the only optimal strategy.

Proposition 5 All (n, σ)P games, with n 6= σ, satisfying (7) have exactly
ba/(k−1)c+ bb/kc+1 optimal strategies and their multiplicity representation
is given by (1a2b3a4b . . . (2k − 2)b(2k − 1)a), where a, b are different but k is
the same for each optimal strategy.

Proposition 6 All (n, σ)P games satisfying (8) have exactly one optimal
strategy (1a2b3a4b . . . (2k − 1)a(2k)b).

Two interesting corollaries follow from the above propositions.

Corollary 7 For given values n and σ (n 6= σ), the entity ba/(k−1)c+bb/kc
is an invariant of the solution space of system (7). If this system has a solution,
then it has exactly ba/(k − 1)c+ bb/kc+ 1 solutions.

Corollary 8 For given values n and σ, the system (8) has at most one solu-
tion.
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We end this section with an example, namely the game that contains the
classical dice usually encountered in games with dice.

Example 9 The (6, 21)P game has 110 strategies and one optimal strategy,
namely the classical dice (1, 2, 3, 4, 5, 6), which is of type (8) with a = b = 1
and k = 3.

3 Optimal strategies for (n, σ)M games

3.1 Results

The following lemma states a remarkable result about the integers occurring
as parts of an optimal strategy in an (n, σ)M game.

Lemma 10 The only optimal strategy in an (n, σ)M game, with n ≥ 3, for
which the highest part is strictly greater than 5 is (2, 4, 6), a strategy of the
(3, 12)M game.

The above lemma will be crucial in our proof of the following theorem.

Theorem 11 An (n, σ)M game has optimal strategies if and only if one of
the following three mutually exclusive conditions is satisfied:

(i) n ≤ 2
(ii) (n, σ) = (3, 12)
(iii) n > 2 and there exist t1, . . . , t5 ∈ N such that the following conditions are

satisfied: 



t1 + t2 + t3 + t4 + t5 = n

t1 + 2t2 + 3t3 + 4t4 + 5t5 = σ

t3 > 0 ⇒ t2 + 2 > (t3 − 1) + t4 + t5

t4 > 0 ⇒ t3 + 2 > t1 + (t4 − 1) + t5

t5 > 0 ⇒ t4 + 2 > t1 + t2 + (t5 − 1)

(9)

We are also able to describe the optimal strategies of the (n, σ)M games. We
first handle the special cases.
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Proposition 12

(1) The (1, σ)M game: the unique strategy (σ) is optimal.
(2) The (2, σ)M game: all bσ

2
c strategies are optimal.

(3) The (3, 12)M game: (2, 4, 6) is the only optimal strategy.

All other optimal strategies are identified in the next proposition.

Proposition 13 All optimal strategies of (n, σ)M games that are not covered
by Proposition 12 have a multiplicity representation (1t12t23t34t45t5), such that
(t1, . . . , t5) is a solution of (9).

However, a closed formula expressing the number of optimal strategies of an
arbitrary (n, σ)M game, has not yet been found.

Example 14 The (5, 16)M game has 37 strategies and only one optimal strat-
egy, namely π = (2, 2, 3, 4, 5) for which (t1, t2, t3, t4, t5) = (0, 2, 1, 1, 1). One can
easily verify that conditions (9) are satisfied for π. Moreover, none of the other
(5, 16) partitions satisfy these conditions.

3.2 Proof

We start this subsection by introducing increment and decrement operations,
which will be essential in the subsequent proof. Any (n, σ) partition π2 can be
constructed starting from any (n, σ) partition π1 using increment/decrement
operations. An increment/decrement operation on an (n, σ) partition is an
operation in which one part of the partition is increased by 1 (the increment
operation) while a second part is decreased by 1 (the decrement operation),
resulting in another (n, σ) partition. In the case of the (n, σ)M game, we
represent an (n, σ) partition as a nondecreasingly ordered column of integers
and we apply an increment or decrement operation to a specific row. Consider
e.g. the (5, 12) partitions π1 = (1, 1, 3, 3, 4) and π2 = (1, 1, 2, 3, 5) (for which
qM
12 = 1/2):

π1 π1

1 1

1 1

3 3

3 3

4 4

→

π1 π2

1 1

1 1

3 2

3 3

4 5

8



We see that the increment operation is applied to row 5 and the decrement
operation to row 3. For brevity, we say that row 5 is incremented and row 3
is decremented. In the present case, row 4 cannot be decremented instead of
row 3, since the then obtained column of integers would no longer be nonde-
creasing. Through a concatenation of these increment/decrement operations,
any (n, σ) partition π2 can be obtained from the partition π1. We can restrict
these concatenations in the sense that once a row has been incremented (resp.
decremented), it cannot be decremented (resp. incremented). Indeed, an in-
crement operation followed later by a decrement operation (and vice versa)
applied to the same row cancel each other out and can therefore be ignored.
A concatenation of increment/decrement operations transforming π1 into π2

will be called a (π1, π2) transformation.

Let νi (resp. νd) denote the number of different incremented (resp. decre-
mented) rows in the transformation of π1 into π2. Then we have that Qπ1,π2 >
1/2 ⇔ νi < νd. This is easily seen by noting that νi (resp. νd) is nothing else
but #{j | ij < i′j} (resp. #{j | ij > i′j}). In general it thus holds that

Qπ1,π2 =
1

2
− νi − νd

2 n
. (10)

We illustrate (10) on some more examples.

Example 15

(i) Consider the (5, 18) partitions π1 = (2, 3, 4, 4, 5) and π2 = (1, 3, 3, 5, 6).
The transformation of π1 in π2 goes (e.g.) as follows:

π1 π1

2 2

3 3

4 4

4 4

5 5

→

π1 π
(1)
1

2 1

3 3

4 4

4 5

5 5

→

π1 π2

2 1

3 3

4 3

4 5

5 6

We obtain νi = νd = 2 and therefore Qπ1,π2 = 1
2
.

(ii) Consider the (5, 18) partitions π1 = (2, 3, 4, 4, 5) and π2 = (1, 1, 5, 5, 6).
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The transformation of π1 in π2 now goes (e.g.) as follows:

π1 π1

2 2

3 3

4 4

4 4

5 5

→

π1 π
(1)
1

2 1

3 3

4 4

4 5

5 5

→

π1 π
(2)
1

2 1

3 2

4 4

4 5

5 6

→

π1 π2

2 1

3 1

4 5

4 5

5 6

Here, we obtain νi = 3 and νd = 2, which implies Qπ1,π2 = 1
2
− 1

10
.

The above reasoning will be applied below. We discuss all (n, σ) partitions
by considering three consecutive steps. The fourth step then determines the
maximum value for the parts of an optimal strategy in an (n, σ)M game.

Step 1: n ≤ 2.

When n = 1 there is only one (n, σ) partition, when n = 2 it is obvious that all
(n, σ) partitions play a draw. Indeed, for two (2, σ) partitions π1 = (a1, σ−a1)
and π2 = (b1, σ−b1), a1 ≤ b1, it holds that either σ−a1 > σ−b1 when a1 < b1,
or σ− a1 = σ− b1 when a1 = b1. The first two parts of Proposition 12 and (i)
of Theorem 11 are therefore already proven.

Step 2: Partitions satisfying

(∃ j > 1) (tj+1 > 0 ∧ n ≥ 2 tj + 3 + tj−1) . (11)

These partitions are not optimal. Indeed, construct π2 starting from π1 by
decrementing all tj parts having value j by 1, decrementing a part having value
j+1 by two and incrementing tj+2 other parts from π1, all different from j−1.
This transformation can be done using increment/decrement operations. The
idea behind the transformation is that there will be two decrement operations
applied to the row on which the first occurrence of j + 1 is situated in the
original partition π1, while all increment operations are applied to different
rows. Using (10) we obtain that Qπ1,π2 = (n− 1)/(2n) and π1 is therefore not
optimal. Essential for this construction is that (11) holds, as this condition
must be satisfied to be able to do all the increment operations on different
rows.

Example 16 Consider the (8, 23) partition π1 = (1, 2, 2, 3, 3, 3, 4, 5). Condi-
tion (11) is satisfied for j = 4. If we choose π2 = (2, 3, 3, 3, 3, 3, 3, 3), we obtain
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Qπ1,π2 = n−1
2n

= 7
16

< 1
2
.

π1 π1

1 1

2 2

2 2

3 3

3 3

3 3

4 4

5 5

→

π1 π
(1)
1

1 1

2 2

2 3

3 3

3 3

3 3

4 3

5 5

→

π1 π
(2)
1

1 1

2 3

2 3

3 3

3 3

3 3

4 3

5 4

→

π1 π2

1 2

2 3

2 3

3 3

3 3

3 3

4 3

5 3

In the last transformation, we see that the decremented part is again on the
row where the first occurrence of j + 1 is situated in π1, which is the reason
why Qπ1,π2 < 1

2
.

Step 3: All partitions not yet covered above are optimal.

These partitions satisfy

n ≥ 3 ∧ (∀ j > 1) (tj+1 > 0 ⇒ n < 2 tj + 3 + tj−1) . (12)

Before presenting the proof, we fix some notation. We say that an increment or
decrement operation yields a decrementable (resp. incrementable) row, if after
the increment or decrement operation a row becomes available for a decrement
(resp. increment) operation and that row was not available before the incre-
ment or decrement operation was performed. Consider e.g. π1 = (2, 3, 3, 5).
It holds that incrementing row 3 yields an incrementable row (namely row 2)
while incrementing row 4 does not yield an incrementable or decrementable
row. Indeed, by incrementing row 3 we obtain π′1 = (2, 3, 4, 5) and in this
partition row 2 is incrementable while it was not incrementable in partition
π1. Incrementing row 4 yields π′′1 = (2, 3, 3, 6) and all incrementable or decre-
mentable rows are the same for π1 and π′′1 . We will also use the notions of first
increment (resp. decrement) operation on a row and first increment (resp.
decrement) operation on the same row. The former denotes an increment
(resp. decrement) operation done on a row that has not yet been incremented
or decremented in the process of transforming π1 into π2. The latter denotes
the increment (resp. decrement) operation in the transformation step in which
it happens for the first time that a row is incremented (resp. decremented) for
a second time.

We now prove that all (n, σ) partitions π1 satisfying (12) are optimal strategies.

11



Suppose that there exists an (n, σ) partition π2 that wins from π1. Partition
π2 can again be obtained from partition π1 using increment/decrement op-
erations. From (10) we know that the number of incremented rows must be
higher than the number of decremented rows. We now show that this implies
that (11) holds, which contradicts (12).

Notice first that if (11) would be satisfied then there exists an (n, σ) partition
π2 that wins from π1 such that there exists a (π1, π2) transformation in which
the first decrement on the same row happens earlier than the first (if any)
increment operation on the same row. Conversely, when there exists a (π1, π2)
transformation such that the first decrement on the same row happens earlier
than the first (if any) increment on the same row, then (11) must hold.

Since we suppose that π1 is not optimal, the only case in which (11) would not
be satisfied is when for all (n, σ) partitions π2 that win from π1, all possible
(π1, π2) transformations would be such that the first increment on the same
row happens earlier or at the same time as the first decrement on the same
row. We therefore only need to show that a first increment on the same row
is useless for obtaining rows that can be decremented and also for obtaining
rows that can be incremented for the first time. In the next paragraph, we
will show that an increment on the same row can only yield another row that
has already been incremented. As the number of incremented rows must be
higher than the number of decremented rows, it is therefore never necessary
for the first increment on the same row to happen earlier or at the same time
as the first decrement on the same row.

It is obvious that, in general, not all rows can be used for an increment. For
example, for the partition π = (3, 3, 3) only the third row can be incremented.
However, a first increment on a row can yield a row that can be incremented
for the first time. For example, decrementing the first row and incrementing
the last row of π results in π′ = (2, 3, 4). The increment of row 3 makes it
possible to use row 2 of π′ for an increment operation. This was impossible for
partition π. A second increment on the same row, however, never yields a row
that can be incremented for the first time. It is also obvious that an increment
operation never yields a decrementable row.

As Qπ1,π2 < 1/2, the above reasoning shows that there always exists a (π1, π2)
transformation in which the second decrement on a certain row happens be-
fore the second increment (if any) on some other row. But this is impossible,
since (12) would then not be satisfied.

As Step 2 proved that all (n, σ) partitions, with n ≥ 3, not satisfying (12) are
not optimal, Step 3 proves that an (n, σ) partition, with n ≥ 3, is optimal if
and only if (12) is satisfied.

Step 4: Determining a maximum value µ for the parts of an optimal strategy

12



π1 in any (n, σ)M game with n ≥ 3.

It can be easily verified that π1 = (2, 4, 6) is the only optimal strategy in the
(3, 12)M game, which implies µ > 5.

First note that when an integer j > 1 exists such that tj−1 = tj = 0 and tj+1 6=
0, it holds that (12) is not satisfied for this value j and the partition therefore
is not an optimal strategy. We can therefore assume tj−1 = tj = 0 ⇒ tj+1 = 0,
for any j > 1. This implies that n ≥ dµ

2
e and that there are at least dµ

2
e ≥ 3

distinct parts in π1. When ti 6= 0 for all 2 ≤ i ≤ 6, one can verify that (12) is
not satisfied. Suppose therefore for some 1 < i < 6 that ti = 0 and ti+1 6= 0,
then it must hold that n < 3 + ti−1. As there are at least 3 distinct parts, it
holds that n− ti−1 ≥ 2. This in turn implies that n = 2 + ti−1, which implies
that there are exactly three distinct numbers in the partition, implying µ ≤ 6.
When µ = 6, the fact that there are exactly three distinct numbers implies
that t2i−1 = 0 and t2i > 0, for i ∈ {1, 2, 3}. As n < 3 + t2, n < 3 + t4 and
n = t2 + t4 + t6 we obtain t2 = t4 = t6 = 1, resulting in π1 = (2, 4, 6). Note
that π1 clearly satisfies (12).

Step 4 proves Lemma 10 and also the third part of Proposition 12.

The above results can now be combined to prove Proposition 13. Indeed, from
the above reasoning it follows that an (n, σ) partition π1 is optimal if and
only if either n < 3, or (12) holds. If n ≥ 3 and π1 6= (2, 4, 6), then we
also know from the above reasoning that the optimal strategy contains no
parts strictly greater than 5 and therefore has as multiplicity representation
(1t12t23t34t45t5). We can now conclude the proof of Proposition 13 by making
the following remarks. Firstly, it is obvious that

t1 + t2 + t3 + t4 + t5 = n , t1 + 2t2 + 3t3 + 4t4 + 5t5 = σ , (13)

is equivalent to saying that the partition is an (n, σ) partition and that it
contains no parts strictly greater than 5. Secondly, the three other conditions





t3 > 0 ⇒ t2 + 2 > (t3 − 1) + t4 + t5

t4 > 0 ⇒ t3 + 2 > t1 + (t4 − 1) + t5

t5 > 0 ⇒ t4 + 2 > t1 + t2 + (t5 − 1)

are merely a restatement of (12) using (13). This proves the third part of
Proposition 13.

Theorem 11 now follows immediately.
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4 Optimal strategies for (n, σ)L games

4.1 Results

While not all (n, σ)P and (n, σ)M games have an optimal strategy, the situation
is different for (n, σ)L games.

Theorem 17 All (n, σ)L games have at least one optimal strategy.

The exact characterization of these optimal strategies in an (n, σ)L game is
given by the following proposition.

Proposition 18 Consider an (n, σ) partition π = (i1, i2, . . . , in) and let

a =
⌊n

2

⌋
+ 1 , b =

⌊σ − n

a

⌋
+ 1 , c =





n + 1− bσ−n
b−1

c , when b 6= 1 ,

n + 1− (σ − n) , when b = 1 .
(14)

The (n, σ) partition π is an optimal strategy of an (n, σ)L game if and only if
one of the following four mutually exclusive conditions holds:

(i) σ − n ≤ bn/2c and:
- π = (1c−12n−c+1) .

(ii) (n, σ) = (n, 2n), n ≥ 1 and:
- π = (1m2(n−2m)3m), m ∈ {0, 1, . . . , bn

2
c} .

(iii) (n, σ) = (2l, σ), l > 0, σ 6= 2n, σ > 3l and:
- (ic = b ∧ σ 6= l(b + 2) + b− 1) , or
- il+1 ≥ b + 1, or
- π = (1l−1b2(b + 1)l−1), implying (n, σ) = (2l, l(b + 2) + b− 2) .

(iv) (n, σ) = (2l + 1, σ), l ≥ 0, σ 6= 2n, σ > 3l + 1 and:
- ic = b, or
- π = (1lb1(b + 1)l), implying (n, σ) = (2l + 1, l(b + 2) + b) .

Example 19

(i) The (6, 17)L game has 44 strategies of which 5 are optimal: (134261),
(134152), (12214251), (123143) and (112243). Note that for this game b = 3
and it therefore holds that σ = l(b+2)+ b− 1 (with l = 3), which implies
that only the partitions for which il+1 ≥ b + 1 are optimal strategies.

(ii) The (8, 23)L game has 146 strategies and only one optimal strategy, given
by (1345). Indeed, b = c = 4 and there are no strategies satisfying il+1 =
b + 1.

(iii) The (9, 23)L game has 123 strategies of which two are optimal: (1237) and
(143144). As b = c = 3, the first partition corresponds to the case ic = b
while the second one is of the form (1lb1(b + 1)l).

14



We can also state the number of optimal strategies in function of p(N, M, n).
The function p(N, M, n) is well known in partition theory and denotes the
number of partitions of n into at most M parts, each smaller or equal to
N [1]. By definition it holds that p(N, M, 0) = 1, and p(N,M, n) = 0 when
n < 0. As there exists a generating function for p(N,M, n), the numerical
value of the number of optimal strategies can easily be obtained.

Proposition 20 Let pn(M,N) =
∑N

i=0 p(N,M,N − i)p(N,n−M, i) and let

Σ1 = σ − n− bσ − n

b− 1
c(b− 1) , Σ2 = σ − l(b + 2) , (15)

with b and c defined in (14). The number of optimal strategies in an (n, σ)L
game, here denoted as ν(n, σ), is then given in one of the following 5 mutually
exclusive cases (l > 0).

(i) σ − n ≤ bn/2c ∨ n = 1:
ν(n, σ) = 1 .

(ii) (n, σ) = (n, 2n) ∧ n > 1:
ν(n, σ) = bn

2
c+ 1 .

(iii) (n, σ) = (2l, σ) ∧ σ = l(b + 2) + b− 1 ∧ σ > 3l:
ν(n, σ) = pn(l, Σ2) .

(iv) (n, σ) = (2l, σ) ∧ σ 6= 2n ∧ l(b + 2) + b− 1 > σ > 3l:
ν(n, σ) = pn(c− 1, Σ1) + pn(l, Σ2) + d l−c

l+1−c
eb σ

l(b+2)+b−2
c .

(v) (n, σ) = (2l + 1, σ) ∧ σ 6= 2n ∧ σ > 3l + 1:
ν(n, σ) = pn(c− 1, Σ1) + d l+1−c

l+2−c
eb σ

l(b+2)+b
c .

4.2 Proof

In the next five steps Theorem 17 and Proposition 18 are proven and there-
after, using the results from these five steps, Proposition 20 is proven.

Step 1: σ − n ≤ bn/2c.

We start by considering the special case of (n, σ)L games for which σ − n ≤
bn/2c, corresponding to Case (i) of Proposition 18. Note that this condition
is equivalent to b = 1. It is obvious that π1 = (1c−12n−c+1), with c = n + 1−
(σ−n), is an (n, σ) partition and that π1 wins from any other (n, σ) partition
π2. Indeed, let k = #{j | i′j = 1} and m = #{j | i′j > 1} = n − k. As
π2 6= π1 it holds that k ≥ c > dn/2e and Qπ2,π1 = (2m + (c−m− 1))/(2n) =
(n− k + c− 1)/(2n) < 1/2. In the remainder, we will assume σ − n > bn/2c
and therefore b > 1.

A partition will be represented graphically as a Ferrers graph, well known
in the theory of partitions for visualizing a partition. Formally, it is the
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set of points with integral coordinates (j, k) in the plane such that if π =
(i1, i2, . . . , in), then (j, k) ∈ Gπ if and only if 0 ≥ j ≥ −n + 1 and 0 ≤ k ≤
i|j|+1−1 [1]. Although this representation is not essential in the proof, it helps
to visualize the meaning of some variables that will be introduced.

For an (n, σ) partition π1 we utilize the following values, which were already
introduced in Proposition 18 (recall that b > 1):

a =
⌊n

2

⌋
+ 1, b =

⌊σ − n

a

⌋
+ 1, c = n + 1−

⌊σ − n

b− 1

⌋
. (16)

In words, b denotes the highest possible value for idn
2
e and c denotes the lowest

possible value j such that ij = b is possible. Therefore, an (n, σ) partition π1

for which idn
2
e = b surely exists.

Step 2: n = 2l + 1 ∧ il+1 < b, or, n = 2l ∧ il < b ∧ il+1 < b + 1.

When n = 2l + 1, any (n, σ) partition π1 for which il+1 < b loses from any
partition π2 for which i′l+1 = b and is therefore not an optimal strategy. Indeed,
it then holds that i′n−j > ij+1, for any 0 ≤ j ≤ l, which implies Qπ2,π1 ≥
(l + 1)/n > 1/2. When n = 2l, then any partition π1 for which il < b and
il+1 < b + 1 loses from any partition π2 for which i′l = b. Indeed, it then
holds that i′n−j > ij+1, for any 0 ≤ j < l and i′l ≥ il+1, which again implies
Qπ2,π1 > 1/2. We can therefore already exclude these partitions π1 as they are
not optimal strategies. Note that this does not exclude a priori the possibility
for an (n, σ)L game to have optimal strategies.

Step 3: (n, σ) = (n, 2n).

All optimal strategies π1 are given by

π1 = (1m2n−2m3m),m ∈ {0, 1, . . . , bn/2c} . (17)

We first prove that the strategies of type (17) are optimal. Let π2 be another
(n, 2n) partition, with k′ = #{j | i′j = 1} and m′ = #{j | i′j > 2}. As
σ = 2n, we have that k′ ≥ m′. When m′ ≤ m, we obtain Qπ2,π1 ≤ (2m +
(n − 2m))/(2n) = 1/2. When m′ > m, we obtain Qπ2,π1 ≤ (2m′ + n − k′ −
m′)/(2n) ≤ 1/2. We now prove that the strategies (17) are the only optimal
strategies in the (n, 2n)L game. For any π2, with k′ and m′ as defined above,
such that k′ > m′ > 0, and π1 with m < m′ it holds that Qπ2,π1 < 1/2. When
m′ = 0 it holds that π2 = (2n), which is of type (17). This proves Case (ii) of
Proposition 18.

We now subdivide the not yet covered (n, σ)L games into those where n is
even and those where n is odd.

Step 4: n = 2l ∧ σ 6= 2n ∧ b 6= 1.
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Step 4.1: il+1 ≥ b + 1.

All (n, σ) partitions π1 for which il+1 ≥ b + 1, if there are any, are optimal
strategies. Indeed, suppose such a partition π1 exists. For any (n, σ) partition
π2 it holds that i′l < b + 1. Therefore, in−j > i′j+1, for any 0 ≤ j < l, which
implies Qπ1,π2 ≥ 1/2. This corresponds to the second part of Case (iii) of
Proposition 18.

Step 4.2: (n, σ) partitions satisfying

σ = l(b + 2) + b− 1 . (18)

At least one (n, σ) partition π1 satisfying il+1 ≥ b + 1 exists and these (n, σ)
partitions comprise all optimal strategies. Indeed, any partition π2 for which
i′l+1 < b + 1 loses from the partition π1 = (1l−1b1(b + 1)l). This explains the
condition σ 6= l(b + 2) + b− 1 in the first part of Case (iii) of Proposition 18.

Example 21 Consider the (8, 27)L game, which has 352 strategies of which
10 are optimal, and for which (18) clearly holds (b = b19

5
c + 1 = 4). The

Ferrers graph for the partition (13b1(b + 1)4) is shown in Figure 2.n = 8b = 4

Fig. 2. Ferrers graph for the (8, 27) partition (1, 1, 1, 4, 5, 5, 5, 5).

We now investigate the last remaining class of (2l, σ)L games.

Step 4.3: il = il+1 = b ∧ σ 6= l(b + 2) + b− 1 ∧ b 6= 1.

The fact that (18) is not satisfied implies that for any two partitions π1 sat-
isfying il = b and π2 satisfying i′l+1 ≥ b + 1 it holds that Qπ1,π2 = 1/2. It
therefore suffices to investigate Qπ1,π2 with π1 satisfying il = il+1 = b and π2

satisfying i′l = i′l+1 = b. Note that the strict inequality

σ < l(b + 2) + b− 1 (19)

must then hold. Indeed, σ > l(b+2)+b−1 implies b < σ−n+1
l+1

≤ bσ−n+l+1
l+1

c = b,
which is impossible.

We first introduce a useful lemma, considering both n even and n odd, which
will make the subsequent proof and the proof of Step 5 simple.
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Lemma 22 For an (n, σ) partition π1 with idn
2
e = idn

2
e+1 = b > 1 (b defined

by (16)), let s = min{j | ij = b} and t = max{j | ij = b}. It then holds that
t ≥ n + 2− s if s < dn/2e ∧ b > 2, and t ≥ n + 1− s if s = dn/2e ∨ b = 2.

Let n = 2l (resp. n = 2l + 1) when n is even (resp. odd). It holds that
c ≤ s ≤ dn/2e (c defined by (16)) and t ≥ dn/2e+ 1. By definition of s and t
it must hold that

σ ≥ s− 1 + (t− s + 1)b + (n− t)(b + 1) , (20)

or equivalently,
t ≥ n− σ + nb− (s− 1)(b− 1) . (21)

First assume n is even. As (19) holds, we obtain (adding s to both sides of (21))

t + s > n− l(b + 2)− b + 1 + nb− (s− 1)(b− 1) + s ,

which simplifies to
t + s > n + (l − s)(b− 2) , (22)

from which the desired inequalities immediately follow.

Now assume n is odd. From the tautology b−1 < b, it follows that bσ−n
l+1
c < b,

which implies σ− n < (l + 1)b, finally implying σ < l(b + 2) + b + 1. Together
with (21) this implies that

t + s > n + (l + 1− s)(b− 2) , (23)

from which the desired inequalities again follow.

Suppose i′c = i′l+1 = il = il+1 = b, with n = 2l. Let r = max{j | i′j = b} and
let s and t be defined as in the above lemma. Hence, the parts of π1 and π2

satisfy 



ij < b, if 1 ≤ j < s ,

ij = b, if s ≤ j ≤ t ,

ij > b, if t < j ≤ n ,





i′j < b, if 1 ≤ j < c ,

i′j = b, if c ≤ j ≤ r ,

i′j > b, if r < j ≤ n .

It now holds that

Qπ2,π1 =
1

n

(
max(s− 1, n− r)+

1

2
(min(n + 1− c, t)−max(s− 1, n− r))

)

=
1

2n

(
min(n + 1− c, t) + max(s− 1, n− r)

)
.

First consider s = c. Using Lemma 22, we then obtain Qπ2,π1 = (n + 1 − c +
s− 1)/(2n) = 1/2. Partitions π1 and π2 satisfying ic = b resp. i′c = b therefore
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play a draw. Next, consider s > c, implying

Qπ2,π1 =
1

2n

(
min(n + 1− c, t) + s− 1

)
.

If t ≥ n + 1 − c, then Qπ2,π1 = (n + s − c)/(2n), which implies Qπ2,π1 > 1/2
for s 6= c. If t < n + 1 − c then it holds that Qπ2,π1 = (t + s − 1)/(2n) ≥ 1/2
(again using Lemma 22). Moreover, when s < l or b > 2, the same lemma
implies Qπ2,π1 > 1/2. The above already proves the first part of Case (iii) of
Proposition 18.

Partitions satisfying s = l and the case b = 2 need to be investigated further, to
see if there are other optimal strategies possible. We therefore investigate when
it holds that Qπ2,π1 = 1/2, or equivalently when t + s− 1 = n. Inequality (20)
is then equivalent to

σ ≥ 2n + t(b− 2) . (24)

The definition of b from (16) implies b(l + 1) > σ − n and combining this
with (24), we obtain the strict inequality

(b− 2)(t− l) < b . (25)

Inequality (25) is only satisfied when b = 2 or when t = l+1 (recall that b = 1
is excluded and that t ≥ l + 1). Indeed, when t − l > 1, it holds that (25) is
equivalent to b < 2 + 2/(t − l − 1), which can only hold when b = 2. When
b = 2 it holds that σ ≥ 2n and the definition of b then implies σ = 2n or
σ = 2n+1. The case σ = 2n corresponds to Step 3 while σ = 2n+1 implies that
inequality (19) is not satisfied. When t = l+1, we obtain σ ≥ 2n+(l+1)(b−2).
When σ > 2n + (l + 1)(b− 2), (19) is again not satisfied.

We now consider the case where σ = 2n + (l + 1)(b − 2), t = l + 1 and
s = l, implying that π1 = (1l−1b2(b + 1)l−1). We will prove that π1 is optimal
and therewith prove the third part of Case (iii) of Proposition 18. Consider
another (n, σ) partition π2 with i′l = i′l+1 = b and let s′ = min{j | i′j = b} ≤ l
and t′ = max{j | i′j = b} > l. The parts of π1 and π2 then satisfy





ij < b, if 1 ≤ j < l ,

ij = b, if l ≤ j ≤ l + 1 ,

ij > b, if l + 1 < j ≤ n ,





i′j < b, if 1 ≤ j < s′ ,

i′j = b, if s′ ≤ j ≤ t′ ,

i′j > b, if t′ < j ≤ n .

It follows that

Qπ2,π1 =
1

n

(
(l − 1) +

1

2
(min(t′ − s′ + 1, 2))

)
=

1

2
,

and therefore
π1 = (1l−1b2(b + 1)l−1) (26)
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is an optimal strategy. This corresponds to the third part of Case (iii) of
Proposition 18.

The aggregation of the reasonings from Step 4 prove Case (iii) of Proposi-
tion 18.

Example 23

(i) Consider the (6, 20)L game, for which it holds that b = 4 and c = 3. In
Figure 3 the Ferrers graph of each optimal strategy of the game is given.
The optimal strategies satisfying ic = b are given by (113144), (2244),
(11214351), (124252) and (124361). Note that the fourth partition is of
type (26), but as c = l it is not a special case. As can be easily seen in
the Ferrers graphs, these optimal strategies differ from each other by rear-
ranging the Σ1 = 2 dots that can be moved around freely. The remaining
optimal strategies are those satisfying il+1 ≥ b + 1, given by (123153),
(112253), (12215261), (135162) and (135271). These latter optimal strate-
gies differ from each other by rearranging the Σ2 = 2 free dots. Note that
Σ1 and Σ2 are defined by (15).�1 = 2b = 4

il+1 � b + 1�2 = 2

Fig. 3. Optimal strategies of the (6, 20)L game.

(ii) Consider the (12, 32)L game. We obtain that b = 3, c = 3, l(b+2)+b−1 =
32 = σ. The only (12, 32) partition satisfying ic = b is π1 = (12310)
and when π2 = (153146) it indeed holds that Qπ2,π1 > 1/2. All optimal
strategies are therefore those satisfying il+1 ≥ b + 1, given by (153146),
(142246), (15214551), (164561) and (164452).

(iii) Consider the (14, 36)L game. We now obtain that b = 3, c = 4, l(b +
2) + b − 1 = 37 > σ. There is one (14, 36) partition satisfying ic = b,
namely (13311), and it is an optimal strategy. The other optimal strategies
all satisfy il+1 ≥ b + 1, and are given by (162147) and (174651).

(iv) Consider the (4, 22)L game. For the above 3 examples the optimal strate-
gies satisfying il+1 ≥ b always satisfied il+1 = b + 1. In general this is not
true, as is indicated by the present example, for which it holds that b = 7
and for which the optimal strategy (12(10)2) satisfies il+1 > b + 1. We do
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not explicitly specify the other optimal strategies for this game, as they
are numerous.

Step 5: n = 2l + 1 ∧ σ 6= 2n ∧ b 6= 1.

All (n, σ) partitions π1 for which ic = b or for which il+1 = b∧ il+2 = b + 1 are
the only optimal strategies. The proof is completely analogous to the proof
for n even. It follows directly that all optimal strategies π1 must satisfy the
condition il+1 = b, and that such a strategy always exists. Secondly, it is
evident that partitions of type

π1 = (1lb1(b + 1)l) (27)

are optimal strategies and these only exist in (2l+1, l(b+2)+b)L games. Finally,
using Lemma 22, we obtain in a completely analogous way as in Step 4.3 that
partitions of type (27) are the only possible optimal strategies that do not
satisfy ic = b, and that all (n, σ) partitions that satisfy ic = b are optimal.
This proves Case (iv) of Proposition 18. Note that if c = l + 1, partition (27)
satisfies ic = b and is then not a special case.

Example 24 Consider the (7, 18)L game. We obtain that b = c = 3 and
σ = l(b+2)+b. The optimal strategies are therefore given by (133143), (123441)
and (112135), the first one being of type (27).

As the cases above covered all possible (n, σ)L games and for each game there
was always at least one optimal strategy, we have also proven Theorem 17.

Using the above descriptions of the optimal strategies, we can state the num-
ber of optimal strategies for any (n, σ)L game using the function pn(M, N) =∑N

i=0 p(N, M, N − i)p(N,n − M, i), which was already introduced. Proposi-
tion 20 is proven below, using the previously introduced values b and c, defined
by (16), and Σ1 and Σ2 defined by (15). The number of optimal strategies in
an (n, σ)L game, here denoted as ν(n, σ), is then given by:

(i) σ − n ≤ bn/2c ∨ (n, σ) = (1, σ):
ν(n, σ) = 1 .

When n = 1 there is only one strategy, namely (σ). The result for
σ − n ≤ bn/2c, which is equivalent to b = 1, follows from the result of
Step 1.

(ii) (n, σ) = (2, σ):
ν(n, σ) = bσ

2
c .

All strategies are optimal, this follows implicitly from the proofs of this
subsection and this case is implicitly included in Proposition 20.

(iii) (n, σ) = (n, 2n):
ν(n, σ) = bn

2
c+ 1 .

This is immediately clear by counting the optimal strategies obtained
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in Step 3.
(iv) (n, σ) = (2l, σ) ∧ σ = l(b + 2) + b− 1 ∧ σ 6= 2n ∧ b 6= 1:

ν(n, σ) = pn(l, Σ2) .
This corresponds to Step 4.2. We have to count the number of (n, σ)

partitions for which il+1 ≥ b+1. We can construct all of them by starting
with the Ferrers graph of (1l(b + 1)l) and distributing the remaining Σ2

dots in all possible combinations to obtain all Ferrers graphs of (n, σ)
partitions with il+1 ≥ b + 1 (cfr. the bottom row of Figure 3).

(v) (n, σ) = (2l, σ) ∧ σ = l(b + 2) + b− 2 ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c− 1, Σ1) + pn(l, Σ2) + d l−c

l+1−c
e .

This corresponds to Steps 4.1 and 4.3, in the case that (26) is a possible
strategy. Here, we have to count the number of (n, σ) partitions for which
ic = b, this is given by pn(c − 1, Σ1). We also have to count the number
of (n, σ) partitions for which il+1 ≥ b + 1, given by pn(l, Σ2). Finally we
also have to take into account the special case (26). Unless c = l, this
partition has not yet been counted.

(vi) (n, σ) = (2l, σ) ∧ σ < l(b + 2) + b− 2 ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c− 1, Σ1) + pn(l, Σ2) .

This corresponds to Steps 4.1 and 4.3, when (26) is not a possible
strategy. This case and the previous case are combined into Case (iv) of
Proposition 20.

(vii) (n, σ) = (2l + 1, σ) ∧ σ = l(b + 2) + b ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c− 1, Σ1) + d l+1−c

l+2−c
e .

This corresponds to Step 5, in the case that (27) is a possible strategy.
Here, we have to count the number of (n, σ) partitions for which ic = b
and also the special partition (1lb1(b+1)l), which has not yet been counted
unless c = l + 1.

(viii) (n, σ) = (2l + 1, σ) ∧ σ < l(b + 2) + b ∧ σ 6= 2n ∧ b 6= 1:
ν(n, σ) = pn(c− 1, Σ1) .

This corresponds to Step 5, when (27) is not a possible strategy. The
current case and the previous case are combined into Case (v) of Propo-
sition 20.

5 Conclusion

We have introduced three interesting variants of the same game, played with
partitions of σ into n parts, σ and n fixed before the game starts. The games
are defined by viewing a partition as a random variable uniformly distributed
over the parts of the partition and by stochastically comparing these random
variables. The definitions of the game variants differ from each other only by
the copula used to couple the marginal uniform cdf into the bivariate cdf.
For each game variant, we have characterized which games possess optimal
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strategies and we explicitly stated these strategies. It is clear from the results
that the optimal strategies are characterized completely differently for each
game variant.

We conclude by giving four tables containing the number of (n, σ) partitions
and the number of optimal strategies in the (n, σ)M, resp. (n, σ)P, resp. (n, σ)L
game (for n ∈ [1, 25] and σ ∈ [n, n + 24]). The row number denotes the value
n, while the column number denotes the value σ−n. For example, the number
of optimal strategies of the (8, 27)L game, is located in Table 4 in row number
8 and column number 27−8 = 19 and is given by 10. As can be deduced from
the tables, the most interesting games are those where σ > 2n > 4.
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Table 1
Number of (n, σ) partitions.
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σ −
n

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13

3 1 1 2 2 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 2 2 3 4 3 2 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 2 2 3 3 4 4 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 2 2 3 3 3 5 5 3 4 2 1 2 1 0 0 0 0 0 0 0 0 0 0

7 1 1 2 2 3 3 3 4 6 5 4 5 3 1 1 1 0 0 0 0 0 0 0 0 0

8 1 1 2 2 3 3 3 4 4 6 6 5 6 4 2 2 1 1 0 0 0 0 0 0 0

9 1 1 2 2 3 3 3 4 4 4 7 7 5 7 5 3 3 1 0 0 0 0 0 0 0

10 1 1 2 2 3 3 3 4 4 4 5 8 7 6 8 6 4 4 2 1 1 1 0 0 0

11 1 1 2 2 3 3 3 4 4 4 5 5 8 8 7 9 7 5 5 3 1 1 0 0 0

12 1 1 2 2 3 3 3 4 4 4 5 5 5 9 9 7 10 8 6 7 4 2 2 1 0

13 1 1 2 2 3 3 3 4 4 4 5 5 5 6 10 9 8 11 9 7 8 5 3 3 1

14 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 10 10 9 12 10 8 9 7 4 4

15 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 11 11 9 13 11 9 11 8 5

16 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 12 11 10 14 12 10 12 9

17 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 12 12 11 15 13 11 13

18 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 13 13 11 16 14 12

19 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 14 13 12 17 15

20 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 14 14 13 18

21 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 15 15 13

22 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 16 15

23 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 16

24 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9

25 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9

Table 2
Number of optimal strategies for (n, σ)M games.

σ −
n

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13

3 1 1 1 2 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 3 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

5 1 1 1 1 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

6 1 1 1 1 1 1 4 1 1 0 1 0 2 0 0 1 0 0 1 0 0 0 0 0 0

7 1 1 1 1 1 1 1 4 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

8 1 1 1 1 1 1 1 1 5 1 1 0 1 0 1 0 2 0 0 0 0 0 0 0 1

9 1 1 1 1 1 1 1 1 1 5 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1

10 1 1 1 1 1 1 1 1 1 1 6 1 1 0 1 0 1 0 1 0 2 0 0 0 0

11 1 1 1 1 1 1 1 1 1 1 1 6 0 0 0 0 0 0 0 0 0 0 2 0 0

12 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 0 1 0 1 0 1 0 1 0 3

13 1 1 1 1 1 1 1 1 1 1 1 1 1 7 0 0 0 0 0 0 0 0 0 0 0

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 1 0 1 0 1 0 1 0 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0 0 0

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 0 1 0 1 0 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 0 0 0 0 0 0 0

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 0 1 0 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 0 1

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 0 0

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1

23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 0

24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13

25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3
Number of optimal strategies for (n, σ)P games.
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σ −
n

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13

3 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

4 1 1 1 1 3 2 2 4 5 3 7 8 6 10 14 9 16 20 15 22 30 21 32 40 31

5 1 1 1 1 1 3 1 2 2 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1

6 1 1 1 1 1 1 4 2 1 3 4 5 2 4 10 10 3 7 15 18 6 12 23 30 11

7 1 1 1 1 1 1 1 4 1 2 1 3 1 2 5 2 1 2 5 10 1 2 5 10 1

8 1 1 1 1 1 1 1 1 5 2 1 2 2 5 5 1 3 7 7 10 2 4 10 20 20

9 1 1 1 1 1 1 1 1 1 5 1 2 1 2 2 1 2 5 1 3 1 2 5 10 2

10 1 1 1 1 1 1 1 1 1 1 6 2 1 2 1 3 4 5 1 2 6 3 8 10 1

11 1 1 1 1 1 1 1 1 1 1 1 6 1 2 1 2 1 3 1 2 5 1 2 6 1

12 1 1 1 1 1 1 1 1 1 1 1 1 7 2 1 2 1 2 2 5 5 1 2 5 2

13 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 2 1 2 1 2 2 1 2 5 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 2 1 2 1 2 1 3 4 5 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 2 1 2 1 2 1 3 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 2 1 2 1 2 1 2 2

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 2 1 2 1 2 1

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 2 1 2 1 2 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 2 1 2 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 2 1 2 1

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 2 1

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1

23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1

24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13

25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4
Number of optimal strategies for (n, σ)L games.

26


