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Abstract

We introduce two extreme methods to pairwisely compare ordered
lists of the same length, viz. the comonotonic and the countermono-
tonic comparison method, and show that these methods are respec-
tively related to the copula TM (the minimum operator) and the
ÃLukasiewicz copula TL used to join marginal cumulative distribution
functions into bivariate cumulative distribution functions. Given a
collection of ordered lists of the same length, we generate by means of
TM and TL two probabilistic relations QM and QL and identify their
type of transitivity. Finally, it is shown that any probabilistic relation
with rational elements on a 3-dimensional space of alternatives which
possesses one of these types of transitivity, can be generated by three
ordered lists and at least one of the two extreme comparison methods.

Keywords: Comonotonic/Countermonotonic comparison, Copula,
Ordered list, Probabilistic relation, Transitivity.
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1 Introduction

Recently, we have introduced the notion of a dice model as a framework for
describing a class of probabilistic relations [5]. Recall that a probabilistic
relation Q on a set of alternatives A, often also called a reciprocal or ipsod-
ual relation, is a mapping from A2 to [0, 1] such that Q(a, b) + Q(b, a) = 1.
Probabilistic relations are frequently used in various types of preference mod-
els [2, 7, 12]. The number Q(a, b) can, for instance, express the degree of
preference of alternative a over alternative b.

Central to the dice model is a collection (X1, X2, . . . , Xm) of m > 2 hy-
pothetical fair dice, each dice possessing n faces, and each face containing
a strictly positive integer. For any couple of dice (Xi, Xj) taken from the
collection, the probability qij that Xi wins from Xj can be computed, con-
form with the principle that when the dice are rolled independently, the one
showing the highest number wins, whereas in case of a tie the dice are rolled
again in order to pinpoint a winner. The dice can therefore also be regarded
as independent discrete random variables Xi uniformly distributed on mul-
tisets Ai of cardinality n, where Ai contains all the integers on the faces of
dice Xi – note that a multiset can contain a same element more than once.
By statistically comparing any two random variables Xi and Xj from the
collection (X1, X2, . . . , Xm), a probabilistic relation QP = [qP

ij ] is generated
in the following way [5, 6]:

qP

ij = Prob{Xi > Xj} +
1

2
Prob{Xi = Xj} . (1)

The meaning of the superscript P will be made clear later on. In agreement
with the dice metaphor, the winning probabilities qP

ij are computed as:

qP

ij =
#{(u, v) ∈ Ai × Aj | u > v}

n2
+

#{(u, v) ∈ Ai × Aj | u = v}

2n2
. (2)

In the language of preference modeling, one should identify the set of alterna-
tives with the collection of dice, the preferences being winning probabilities.

In [5], our main interest was to study the transitivity of the probabilistic
relation QP. In particular, the relation QP exhibits a type of transitivity,
called dice-transitivity, which does not belong to the class of stochastic tran-
sitivity [7], neither to the class of T -transitivity, with T a t-norm [9]. Instead,
it nicely fits into the framework of cycle-transitivity [4], which generalizes,
like the FG-transitivity framework of Switalski [13], the concepts of stochas-
tic transitivity and T -transitivity, but is even more general since the latter
does not cover the case of dice-transitivity [3].
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Later on the dice model has been extended to yield a framework for the
pairwise comparison of independent discrete or continuous random variables
with arbitrary marginal distributions [6]. Any collection (X1, X2, . . . , Xm)
of independent random variables still generates a probabilistic relation QP

through the application of the probabilistic definition (1). The main result
of [6] is that this probabilistic relation is always dice-transitive, proving
that the particular case of independent discrete random variables uniformly
distributed on integer multisets is a generic case, as far as the transitivity of
the generated probabilistic relation is concerned.

Obviously, one can invent many alternatives to pairwisely compare mul-
tisets of cardinality n. In this paper, two such alternatives are considered. By
ordering the elements – without loss of generality, we systematically opt for
the increasing order – the multisets are transformed into ordered lists of inte-
gers, all lists having length n. The winner of two ordered lists is determined
as follows. A number k ∈ N[1, n] is randomly chosen, where N[a, b] denotes
the set of integers in the closed interval [a, b]. Two extreme list compari-
son strategies are distinguished. With the comonotonic (countermonotonic)
comparison strategy the integer at position k in the first list is compared to
the integer at position k (at position n − k + 1) in the second list; unless
these integers are equal, in which case there is a replay, the list that contains
the highest integer at the respective position is the winning list.

In the statistical interpretation, ordered lists can be regarded as uni-
formly distributed discrete random variables, and the winning probabilities
corresponding to either the comonotonic or the countermonotonic compari-
son strategy can be used to generate from a given collection (X1, X2, . . . , Xm)
of such random variables a probabilistic relation, which will be respectively
denoted as QM and QL. It will be shown that the comonotonic and counter-
monotonic comparison strategies amount to treating any two random vari-
ables Xi and Xj that are compared as being fictitiously coupled, where the
type of coupling, which is most elegantly described by a copula Cij, depends
upon the comparison strategy. The copula Cij is the function that joins
the one-dimensional marginal cumulative distribution functions FXi

and FXj

into a bivariate cumulative distribution function FXi,Xj
[11]. It is one of our

concerns to lay bare the relationship between the comparison strategies and
particular copulas. The main results of the paper are, however, related to the
characterization of the transitivity of the probabilistic relations QM and QL.

The paper is organized as follows. In the next section, the two extreme
strategies for comparing ordered lists of integers of the same cardinality n are
introduced and it is shown how these strategies both lead to a probabilistic
relation. In Section 3 the random variable interpretation of ordered lists is
introduced and the relationship between the list comparison strategies and
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specific copulas for pairwisely coupling the random variables is analyzed.
In Section 4, the definition of cycle-transitivity is recalled and emphasis is
put on the way this framework generalizes both stochastic transitivity and T -
transitivity. In Sections 5 and 6, which contain the main results of this paper,
the transitivity of the probabilistic relations generated by both comparison
strategies is analyzed and shown to fit into the cycle-transitivity framework.
Finally, some conclusions and prospects for future work are presented in
Section 7.

2 Two extreme list comparison strategies

As stated before, we look for methods to compare ordered lists of numbers.
For simplicity, we assume that the lists all have the same length n, with n
arbitrary but fixed. As the comparison of lists will finally amount to the
comparison of numbers, and since the lists have finite length, we can assume
without loss of generality that the numbers are (strictly positive) integers.

Let Vn denote the class of all lists of length n composed of strictly positive
integers that are listed in increasing order. An ordered list X ∈ Vn is denoted
as (x(1), x(2), . . . , x(n)), where all x(j) ∈ N0 and x(1) ≤ x(2) ≤ · · · ≤ x(n). To X
is associated the multiset A = {x(1), x(2), . . . , x(n)} and (with some abuse of
notation) the discrete random variable uniformly distributed on the multiset
A will also be noted as X. Any (X1, X2, . . . , Xm) ∈ V m

n is called a (ordered)
collection of ordered lists, or equivalently, a collection of discrete random
variables, uniformly distributed respectively on the multisets Ai, where Ai

denotes the multiset associated to the ordered list Xi.
As was already mentioned in the introduction, the comonotonic compar-

ison strategy of two ordered lists of length n consists in selecting at random
a list position in the range from 1 to n and in further comparing the integers
at this position in both lists. The probability that an ordered list wins from
another ordered list, is again the key concept in building for any collection
(X1, X2, . . . , Xm) ∈ V m

n of ordered lists, a probabilistic relation, which is now
denoted QM.

Definition 2.1 Any collection (X1, X2, . . . , Xm) ∈ V m
n of ordered lists gen-

erates according to the comonotonic comparison strategy of lists, a proba-
bilistic relation QM = [qM

ij ] that is computed as:

qM

ij =
#{k ∈ N[1, n] | x

(k)
i > x

(k)
j }

n
+

#{k ∈ N[1, n] | x
(k)
i = x

(k)
j }

2n
. (3)

Note that for two identical ordered lists, the probability that one of the two
wins from the other equals 1/2, which agrees with the fact that there is no
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circumstance that any one of the two can ever win from the other. Of course,
the reverse is not always true; two ordered lists that have equal probability
1/2 to win from each other, are not necessarily identical.

If instead of comparing an element selected at random from the first
ordered list to the element at the same position in the second ordered list,
one compares the randomly selected element from the first list to a randomly
selected element from the second list, then the comparison strategy becomes
the same as the one between two dice with the same number of faces. Note
that the ordering of the lists then becomes obsolete. Hence, the comparison
strategy for dice can be applied to a collection of ordered lists too and the
probabilistic relation that is generated is QP, which in the framework of the
dice model is defined in (2), but with the list notations reads:

qP

ij =
#{(k, l) ∈ N[1, n]2 | x

(k)
i > x

(l)
j }

n2
+

#{(k, l) ∈ N[1, n]2 | x
(k)
i = x

(l)
j }

2n2
.

(4)
The list comparison strategy from which the probabilistic relation QP origi-
nates, will be called the independent comparison strategy.

With respect to the above strategyy, the comonotonic comparison strat-
egy is mirrored in what is called the countermonotonic comparison strategy.
Applied to ordered lists of length n, it consists in selecting at random a list
position k in the range from 1 to n and in comparing the integer at position k
in the first list to the integer at position n−k+1 in the second list. Note that
if the second list would be ordered in decreasing, instead of increasing order,
then the rules of the comonotonic strategy could be applied, which justifies
the name countermonotonic. For any collection (X1, X2, . . . , Xm) ∈ V m

n the
countermonotonic comparison leads again to a probabilistic relation, which
is denoted QL.

Definition 2.2 Any collection (X1, X2, . . . , Xm) ∈ V m
n of ordered lists gen-

erates according to the countermonotonic comparison strategy of lists, a prob-
abilistic relation QL = [qL

ij] that is computed as:

qL

ij =
#{k ∈ N[1, n] | x

(k)
i > x

(n+k−1)
j }

n
+

#{k ∈ N[1, n] | x
(k)
i = x

(n+k−1)
j }

2n
.

(5)

Let us illustrate the comparison of ordered lists for the three mentioned
strategies on the same example of two ordered lists Xi and Xj with associated
multisets Ai = {1, 2, 5, 8} and Aj = {2, 3, 5, 7}. As illustrated in Figure 1(a),
the computation of qP

ij amounts to the computation of the winning probability
between Xi and Xj as if they were fair four-faced dice. We clearly obtain
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that qP

ij = (0 + 0.5 + 2.5 + 4)/16 = 7/16. In Figure 1(b), the comonotonic
comparison strategy is illustrated and we obtain qM

ij = 0+0+1/8+1/4 = 3/8.
Finally, in Figure 1(c), the countermonotonic strategy is illustrated, which
clearly yields qL

ij = 1/2. For this particular example, it holds that qM

ij ≤
qP

ij ≤ qL

ij. This ordering of the probabilistic relations QM, QP and QL should,
however, not be taken as a rule, as it is easy to construct counterexamples.
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Figure 1: Various methods for comparing two ordered lists illustrated on the
same example lists.

3 Connection between list comparison strate-

gies and copulas

Let us focus on the random variable interpretation of ordered lists, in the
sense that any ordered list can be regarded as a discrete random variable
that is uniformly distributed on the multiset associated to the list.

It is well known that for discrete random variables Xi and Xj that are dis-
tributed on multisets of (strictly) positive integers, the probability pXi,Xj

(k, l)
that Xi takes integer value k and Xj takes integer value l, can be obtained
from the joint cumulative distribution function FXi,Xj

as follows:

pXi,Xj
(k, l) = FXi,Xj

(k, l)+FXi,Xj
(k−1, l−1)−FXi,Xj

(k, l−1)−FXi,Xj
(k−1, l) .

Sklar’s theorem [11] says that if a joint cumulative distribution function
FXi,Xj

has marginals FXi
and FXj

, then there exists a copula C such that for
all x, y:

FXi,Xj
(x, y) = Cij(FXi

(x), FXj
(y)) . (6)

On the other hand, if Cij is a copula and FXi
and FXj

are cumulative dis-
tribution functions, then the function defined by (6) is a joint cumulative
distribution function with marginals FXi

and FXj
.

6



Let us recall [11] that a copula is a binary operation C : [0, 1]2 → [0, 1]
that has neutral element 1 and absorbing element 0, and that satisfies the
property of moderate growth: for any (x1, x2, y1, y2) ∈ [0, 1]4

(x1 ≤ x2 ∧ y1 ≤ y2) ⇒ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1) .

All copulas are situated between the ÃLukasiewicz copula TL(x, y) = max(0, x+
y − 1) and the minimum copula TM(x, y) = min(x, y). In the literature on
copulas, these two extreme copulas are usually denoted as W and M . Here
we prefer to use the notation that refers to the fact that these copulas are
also t-norms. The same holds for TP, the ordinary product, which is a t-norm
and a copula as well.

Let us now lay bare the connection between the probabilistic relation QM

(QL) and the copula TM (TL). Whatever comparison strategy, as soon as two
dice or two ordered lists are interpreted as discrete random variables Xi, Xj,
the winning probability used to compare these random variables and to set
up a probabilistic relation, is defined by Prob{Xi > Xj}+Prob{Xi = Xj}/2.
For discrete random variables, this equality can be restated as

qij =
∑

k>l

pXi,Xj
(k, l) +

1

2

∑

k=l

pXi,Xj
(k, l) . (7)

The random variable Xi (Xj) has cumulative distribution function FXi
(FXj

)
and probability mass function pXi

(pXj
). We first consider the probabilistic

relation when the copula TM is used. It then holds that pM

Xi,Xj
(0, 0) = 0 and

for all (k, l) ∈ N
2
0:

pM

Xi,Xj
(k, l) = min(FXi

(k), FXj
(l)) + min(FXi

(k − 1), FXj
(l − 1))

−min(FXi
(k), FXj

(l − 1)) − min(FXi
(k − 1), FXj

(l)) ,

which is equivalent to:

pM

Xi,Xj
(k, l) =











0 , if FXi
(k) ≤ FXj

(l − 1) ∨ FXj
(l) ≤ FXi

(k − 1) ,

min(FXi
(k), FXj

(l)) − max(FXi
(k − 1), FXj

(l − 1))

, otherwise .

As each element in the multiset has probability 1/n, the first line of the

above expression is equivalent to saying that when #{t ∈ N[1, n] | x
(t)
i =

k ∧ x
(t)
j = l} = 0, it holds that pM

Xi,Xj
(k, l) = 0. The second line is then

equivalent to saying that when #{t ∈ N[1, n] | x
(t)
i = k∧x

(t)
j = l} = u > 0, it
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holds that pM

Xi,Xj
(k, l) = u/n. Using (7), expression (3) for QM now follows

immediately.
Secondly, considering the copula TL, we obtain pL

Xi,Xj
(0, 0) = 0 and for

all (k, l) ∈ N
2
0:

pL

Xi,Xj
(k, l) =

max(0, FXi
(k) + FXj

(l) − 1) + max(0, FXi
(k − 1) + FXj

(l − 1) − 1)

−max(0, FXi
(k) + FXj

(l − 1) − 1) − max(0, FXi
(k − 1) + FXj

(l) − 1) ,

which is equivalent to:

pL

Xi,Xj
(k, l) =











0 , if FXi
(k) ≤ 1 − FXj

(l) ∨ 1 − FXj
(l − 1) ≤ FXi

(k − 1) ,

min(FXi
(k), 1 − FXj

(l − 1)) − max(FXi
(k − 1), 1 − FXj

(l))

, otherwise .

The first line of the above expression is equivalent to demanding that when
#{t ∈ N[1, n] | x

(t)
i = k ∧ x

(n+t−1)
j = l} = 0, it holds that pL

Xi,Xj
(k, l) = 0.

The second part is then equivalent to saying that when #{t ∈ N[1, n] | x
(t)
i =

k ∧ x
(n+t−1)
j = l} = u > 0, it holds that pL

Xi,Xj
(k, l) = u/n. Using (7),

expression (5) for QL follows immediately.
Finally, if we choose the ordinary product TP as copula, then the bivari-

ate cumulative distribution function is the product of two one-dimensional
marginal cumulative distribution functions. This is equivalent to stating that
the random variables are independent. Hence, for all (k, l) ∈ N

2
0 it holds that:

pP

Xi,Xj
(k, l) = pXi

(k) pXj
(l) .

Substitution in (7) yields expression (4) for QP.
We can conclude that there is a one-to-one relationship between the inde-

pendent, the comonotonic and the countermonotonic comparison of ordered
lists on the one side and the copulas TP, TM and TL on the other side. This
relationship not only justifies the superscripts in the probabilistic relations
QP, QM and QL, it also justifies the name of the comparison strategies. In-
deed, if one samples a couple of random variables (X,Y ) whose distribution
functions are joined into a bivariate distribution function by means of TM,
then for any two sample values (x1, y1) and (x2, y2) it holds that x1 < x2

implies y1 ≤ y2 and x1 > x2 implies y1 ≥ y2. Such random variables are
called comonotonic. Similarly, if one samples a couple of random variables
(X,Y ) whose distribution functions are joined into a bivariate distribution
function by means of TL, then for any two sample values (x1, y1) and (x2, y2)
it holds that x1 < x2 implies y1 ≥ y2 and x1 > x2 implies y1 ≤ y2; such
random variables are called countermonotonic.
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4 Cycle-transitivity

For a probabilistic relation Q, we define for all (a, b, c) ∈ A3 the following
quantities [4]:

αabc = min(Q(a, b), Q(b, c), Q(c, a)) ,

βabc = median(Q(a, b), Q(b, c), Q(c, a)) ,

γabc = max(Q(a, b), Q(b, c), Q(c, a)) .

Let us also denote ∆ = {(x, y, z) ∈ [0, 1]3 | x ≤ y ≤ z}.

Definition 4.1 A function U : ∆ → R is called an upper bound function if
it satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;

(ii) for any (α, β, γ) ∈ ∆:

U(α, β, γ) + U(1 − γ, 1 − β, 1 − α) ≥ 1 . (8)

The function L : ∆ → R defined by

L(α, β, γ) = 1 − U(1 − γ, 1 − β, 1 − α)

is called the dual lower bound function of a given upper bound function U .
Inequality (8) then simply expresses that L ≤ U .

Definition 4.2 A probabilistic relation Q on A is called cycle-transitive
w.r.t. an upper bound function U if for any (a, b, c) ∈ A3 it holds that

L(αabc, βabc, γabc) ≤ αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) , (9)

where L is the dual lower bound function of U .

In practice, it is sufficient to check (9) for a single permutation of any
(a, b, c) ∈ A3. Alternatively, it is also sufficient to verify the right-hand
inequality (or equivalently, the left-hand inequality) for two permutations of
any (a, b, c) ∈ A3 (not being cyclic permutations of one another), e.g. (a, b, c)
and (c, b, a). Hence, (9) can be replaced by

αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc) . (10)

Note that a value of U(α, β, γ) equal to 2 is used to express that for the given
values there is no restriction at all.

9



For two upper bound functions such that U1 ≤ U2, it clearly holds that
cycle-transitivity w.r.t. U1 implies cycle-transitivity w.r.t. U2. It is clear
that U1 ≤ U2 is not a necessary condition for the latter implication to hold.
Two upper bound functions U1 and U2 will be called equivalent if for any
(α, β, γ) ∈ ∆ it holds that

α + β + γ − 1 ≤ U1(α, β, γ)

is equivalent to
α + β + γ − 1 ≤ U2(α, β, γ) .

Cycle-transitivity includes as special cases T -transitivity and all known
types of g-stochastic transitivity. A [0, 1]-valued relation R on a set of al-
ternatives A is called T -transitive [8] if for any (a, b, c) ∈ A3 it holds that
T (R(a, b), R(b, c)) ≤ R(a, c). The following proposition [4] shows how T -
transitivity fits into the framework of cycle-transitivity in case the t-norm
T is 1-Lipschitz continuous (for short, 1-Lipschitz), which means that for all
(x, y, z) ∈ [0, 1]3 it holds that |T (x, y) − T (x, z)| ≤ |y − z|.

Proposition 4.1 Let T be a 1-Lipschitz t-norm. A probabilistic relation is
T -transitive if and only if it is cycle-transitive w.r.t. the upper bound function
UT defined by

UT (α, β, γ) = α + β − T (α, β) . (11)

Note that 1-Lipschitz t-norms can also be regarded as associative and com-
mutative copulas. The special t-norms TM, TP and TL are examples of 1-
Lipschitz t-norms. By means of (11) we immediately find that TM-transitivity,
TP-transitivity and TL-transitivity are equivalent to cycle-transitivity w.r.t.
the upper bound functions UM(α, β, γ) = β, UP(α, β, γ) = α + β − αβ and
UL(α, β, γ) = min(α + β, 1), respectively. For the case of TL-transitivity, an
equivalent upper bound function is given by U ′

L
(α, β, γ) = 1.

In the literature one finds various types of stochastic transitivity [2, 10].
They can, however, be regarded as special cases of a generic type of stochastic
transitivity, which we have called g-stochastic transitivity. Let g be a com-
mutative, increasing [1/2, 1]2 → [1/2, 1] mapping. A probabilistic relation Q
on A is called g-stochastic transitive if for any (a, b, c) ∈ A3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) .

In [4], we have proven the following proposition.

Proposition 4.2 Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1]
mapping such that g(1/2, x) ≤ x for any x ∈ [1/2, 1]. A probabilistic relation

10



is g-stochastic transitive if and only if it is cycle-transitive w.r.t. the upper
bound function Ug defined by

Ug(α, β, γ) =











β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(12)

We obtain as special cases (only mentioning the function g):

(i) strong stochastic transitivity: gss(β, γ) = max(β, γ) = γ;

(ii) moderate stochastic transitivity: gms(β, γ) = min(β, γ) = β;

(iii) weak stochastic transitivity: gws(β, γ) = 1/2.

The probabilistic relation QP generated by a dice model has been shown
to be dice-transitive [5, 6]. This is a special type of cycle-transitivity which
is neither a type of T -transitivity nor a type of g-stochastic transitivity.

Definition 4.3 A probabilistic relation is dice-transitive if it is cycle-trans-
itive w.r.t. the upper bound function UD defined by

UD(α, β, γ) = β + γ − βγ . (13)

Note that dice-transitivity can be situated between TP-transitivity and TL-
transitivity, and also between moderate stochastic transitivity and TL-trans-
itivity.

5 Transitivity of QM

In this section our aim is to characterize the type of transitivity of the prob-
abilistic relation QM generated from a collection of ordered lists by applying
the comonotonic list comparison strategy.

Proposition 5.1 The probabilistic relation QM generated from the pairwise
comonotonic comparison of a collection of ordered lists, is TL-transitive.

Proof. Consider any three ordered lists Xi = (x
(1)
i , x

(2)
i , . . . , x

(n)
i ), Xj =

(x
(1)
j , x

(2)
j , . . . , x

(n)
j ), and Xk = (x

(1)
k , x

(2)
k , . . . , x

(n)
k ), taken from a given col-

lection (X1, X2, . . . , Xm) of ordered lists. From (3) it follows that we only
need to compare elements of the same rank in the lists, i.e. the triplets
(x

(l)
i , x

(l)
j , x

(l)
k ), for all l ∈ N[1, n]. It is obvious that the specific compar-

ison done for each such triplet contributes at least 1/n and at most 2/n

11



to the sum qM

ij + qM

jk + qM

ki . Summing over the n positions, we obtain

1 ≤ qM

ij + qM

jk + qM

ki ≤ 2. This proves that Q is cycle-transitive w.r.t. the

upper bound function U(α, β, γ) = 1, whence QM is TL-transitive. ¤

Note that we do not really need the cycle-transitivity framework to cover
the type of transitivity exhibited by QM. Nonetheless, for situating the TL-
transitivity of QM with respect to dice-transitivity (the type of transitivity
of QP) and the type of transitivity of QL which we will characterize further
on, it is preferable to cast all these types of transitivity into their equivalent
cycle-transitive form.

In the case of the dice model, we have been able to formulate conditions
under which a dice-transitive probabilistic relation can be generated by a
dice model. By analogy, we attempt to find out whether any TL-transitive
probabilistic relation can be generated by a collection of ordered lists when
applying the comonotonic comparison strategy. The following two proposi-
tions complete this analysis.

Proposition 5.2 Any 3-dimensional TL-transitive probabilistic relation Q =
[qij] with rational elements can be generated by the application of the comono-
tonic comparison strategy to a collection of three ordered lists of the same
length and such that the associated multisets are disjoint.

Proof. Let Q be such that q12 = p/n, q23 = q/n, q31 = r/n. We will con-

struct three ordered lists X1 = (x
(1)
1 , x

(2)
1 , . . . , x

(n)
1 ), X2 = (x

(1)
2 , x

(2)
2 , . . . , x

(n)
2 ),

and X3 = (x
(1)
3 , x

(2)
3 , . . . , x

(n)
3 ) of length n, all with different elements and

such that the associated sets A1, A2 and A3 are disjoint. More specifically,
we take {x

(j)
1 , x

(j)
2 , x

(j)
3 } = {3j−2, 3j−1, 3j} for all j ∈ N[1, n]. Furthermore,

choose x
(j)
1 > x

(j)
2 for j ∈ N[1, p], x

(j)
1 < x

(j)
2 for j ∈ N[p + 1, n], x

(j)
2 < x

(j)
3

for j ∈ N[1, n − q] and x
(j)
2 > x

(j)
3 for j ∈ N[n − q + 1, n]. It therefore

already holds that x
(j)
3 > x

(j)
1 for j ∈ N[p + 1, n − q] and x

(j)
3 < x

(j)
1 for

j ∈ N[n− q +1, p]. However, for j 6∈ N[p+1, n− q]∪N[n− q +1, p], it can be

chosen freely whether x
(j)
3 > x

(j)
1 or x

(j)
3 < x

(j)
1 . As Q is TL-transitive it holds

that n− p− q ≤ r ≤ 2n− p− q, and we can therefore choose enough of these
remaining j such that x

(j)
3 > x

(j)
1 holds and such that q31 = r/n, concluding

the proof. ¤

The question arises whether the reverse property which holds for 3-dimensional
TL-transitive probabilistic relations, extends to higher-dimensional relations.
The question must be answered negatively, as has been pointed out by Swital-
ski [13] in his analysis of the type of transitivity of the so-called multidimen-
sional model.
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Definition 5.1 The multidimensional model is a preference model in which
the preferences generate a probabilistic relation Q = [qij] defined by

qij =
n

∑

t=1

µt q
(t)
ij , (14)

with q
(t)
ij ∈ {0, 1/2, 1}, q

(t)
ij = 1− q

(t)
ji for all t ∈ N[1, n] and where the weights

µt (associated to criterion t) are such that µt ≥ 0 for all t ∈ N[1, n] and
∑n

t=1 µt = 1.

One easily sees that a multidimensional model with all µi = 1/n is equiv-
alent to a collection of ordered lists from which the probabilistic relation is
generated by applying the comonotonic comparison strategy. Hence, if for a
TL-transitive probabilistic relation Q with rational elements a multidimen-
sional model can be constructed that generates Q, then this model obviously
has rational weights µt, so that also a collection of ordered lists can be con-
structed that generates that same probabilistic relation Q by applying the
comonotonic comparison strategy. Moreover, if no multidimensional model
can be found to generate Q, then also no collection of ordered lists that gen-
erates Q exists. This problem has been shown to be closely connected to the
coordinate values of the vertices of generalized transitive tournament poly-
topes [1]. For a review of recent results in this field, the reader is referred
to [14].

From Theorem 5.3 of [13], we obtain:

Proposition 5.3 Let Q = [qij] be an m-dimensional probabilistic relation
with rational elements and m ≤ 5. Then Q is generated by a collection
of ordered lists that are comonotonically compared if and only if Q is TL-
transitive.

Furthermore, it follows from [1] that for every n > 5 there exists a TL-
transitive probabilistic relation Q that has no representation as in (14), and
can therefore not be generated by ordered lists that are comonotonically
compared.

6 Transitivity of QL

We now turn to the other extreme strategy for comparing ordered lists and
analyse the type of transitivity of a probabilistic relation of the type QL. To
make this analysis more transparant, we recall the notion of partial stochastic
transitivity [7].
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Definition 6.1 [3] A probabilistic relation Q on A is called partially stochas-
tic transitive if for any (a, b, c) ∈ A3 it holds that

(Q(a, b) > 1/2 ∧ Q(b, c) > 1/2) ⇒ Q(a, c) ≥ min(Q(a, b), Q(b, c)) . (15)

This type of transitivity resembles moderate stochastic transitivity, but is es-
sentially different from it since moderate stochastic transitivity requires that
Q(a, c) in (15) is bounded from below by min(Q(a, b), Q(b, c)), also when
Q(a, b) = 1/2 or Q(b, c) = 1/2. Next, we recall how partial stochastic tran-
sitivity fits into the framework of cycle-transitivity [3].

Proposition 6.1 A probabilistic relation Q is partially stochastic transitive
if and only if it is cycle-transitive w.r.t. the upper bound function Ups defined
by

Ups(α, β, γ) = γ . (16)

Note that partial stochastic transitivity is stronger than TL-transitivity, even
stronger than dice-transitivity, but slightly weaker than moderate stochastic
transitivity.

Proposition 6.2 The probabilistic relation QL generated from the pairwise
countermonotonic comparison of a collection of ordered lists, is partially
stochastic transitive.

Proof. Consider any three ordered lists Xi = (x
(1)
i , x

(2)
i , . . . , x

(n)
i ), Xj =

(x
(1)
j , x

(2)
j , . . . , x

(n)
j ), and Xk = (x

(1)
k , x

(2)
k , . . . , x

(n)
k ), taken from a given col-

lection (X1, X2, . . . , Xm) of ordered lists. Let us assume that qL

ij > 1/2 and
qL

jk > 1/2. If qL

ik = 1, then qL

ik ≥ min(qL

ij, q
L

jk) holds. Suppose now that

qL

ik < 1 and let u = min{l | x
(l)
i ≥ x

(n+1−l)
j }, v = min{l | x

(l)
j ≥ x

(n+1−l)
k } and

w = min{l | x
(l)
k ≥ x

(n+1−l)
i }. If w > min(n−u+1, n−v+1), then it holds that

qL

ki ≤ (n−min(n−u+1, n−v +1))/n, which implies that qL

ik ≥ min(qL

ij, q
L

jk).
From here on, we can therefore assume that w ≤ min(n − u + 1, n − v + 1).
As max(u, v) ≤ n/2, it holds that

x
(u)
i ≥ x

(n−u+1)
j ≥ x

(v)
j ≥ x

(n−v+1)
k ≥ x

(w)
k ≥ x

(n−w+1)
i ≥ x

(u)
i ,

which implies

x
(u)
i = x

(n−u+1)
j = x

(v)
j = x

(n−v+1)
k = x

(w)
k = x

(n−w+1)
i = x

(u)
i .

We therefore have that x
(l)
j = x

(v)
j for all v ≤ l ≤ n − u + 1. First, suppose

that u ≥ v. For l ∈ N[u, n − u] it holds that

x
(l)
i ≥ x

(n−l+1)
j = x

(l)
j = x

(v)
j = x

(n−v+1)
k ≥ x

(n−l+1)
k ,
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and for l > n − u it holds that (as qL

ij > 1/2)

x
(l)
i > x

(v)
j = x

(n−v+1)
k ≥ x

(n−l+1)
k .

It follows that qL

ik ≥ qL

ij. Finally, suppose u < v. For l ∈ N[v, n − v], it holds
that

x
(l)
i ≥ x

(n−l+1)
j = x

(l)
j ≥ x

(n−l+1)
k ,

while for l > n − v it holds that (as qL

jk > 1/2)

x
(l)
i ≥ x

(v)
i ≥ x

(n−v+1)
j > x

(v)
k ≥ x

(n−l+1)
k .

It now follows that qL

ik ≥ qL

jk. Partial stochastic transitivity must therefore
be satisfied. ¤

For 3-dimensional partially stochastic transitive probabilistic relations the
statement of Proposition 6.2 can be inverted.

Proposition 6.3 Any 3-dimensional partially stochastic transitive proba-
bilistic relation Q = [qij] with rational elements can be generated by the
application of the countermonotonic comparison strategy to a collection of
three ordered lists of the same length and such that the associated multisets
are disjoint.

Proof. Let Q = [qij] be such a probabilistic relation. Partial stochastic
transitivity does not impose any condition only when at least two elements
from {qij, qjk, qki} equal 1/2. We first consider this case. Without loss of
generality, suppose qij = qjk = 1/2 and qki = a/(2n), with a ∈ N[0, n].
The following three ordered lists generate this probabilistic relation when
the countermonotonic comparison strategy is applied:

Xi = (N[n + 1, n + a], N[3n + 1, 5n − a]) ,

Xj = (N[n + a + 1, 2n + a], N[5n − a + 1, 6n − a]) ,

Xk = (N[1, n], N[2n + a + 1, 3n], N[6n − a + 1, 6n]) .

Suppose now that no such two elements equal 1/2. Without loss of generality
we can also assume that βijk > 1/2. As the probabilistic relation has rational
elements, we can write them with common denominator n. Suppose first that
the elements can be reordered such that qij = c/n, qjk = b/n and qki = a/n,
with c ≥ b > n/2 and n − a ≥ b. The following three ordered lists generate
this probabilistic relation:

Xi = (N[n + 1 + c − a, 2n + c − a]) ,

Xj = (N[1, n − b], N[n + 1, b + c], N[2n + c − a + 1, 3n − a]) ,

Xk = (N[n − b + 1, n], N[b + c + 1, n + c − a], N[3n − a + 1, 3n]) .
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Secondly, suppose that the elements can be reordered such that qij = b/n,
qjk = c/n and qki = a/n, again with c ≥ b > n/2 and n − a ≥ b, then this
probabilistic relation is generated by the following three ordered lists:

Xi = (N[2n − c − a + 1, 3n − c − b − a], N[2n + 1, 2n + b]) ,

Xj = (N[1, n − c], N[3n − c − b + 1, 2n], N[2n + b + 1, 3n]) ,

Xk = (N[n − c + 1, 2n − c − a], N[3n − c − b − a + 1, 3n − c − b]) .

As all cases have been considered, the proof is complete. ¤

Again, the question arises whether this inverse statement can be gener-
alized to higher-dimensional probabilistic relations. And again, the question
must be answered in negative sense.

Proposition 6.4 Not all 4-dimensional partially stochastic transitive proba-
bilistic relations (with rational elements) can be generated from a collection of
four ordered lists when the countermonotonic comparison strategy is applied.

Proof. We will construct a class of graphs each of which represents a par-
tially stochastic probabilistic relation that cannot be generated by a quadru-
plet (X1, X2, X3, X4) of ordered lists. We will use the graph of Figure 2,
which shows explicitly that q13 = e = 0 and q24 = f = 0. Obviously, it holds
that a, b, c, d ∈ [0, 1].

a

b 6= 0

c

d 6= 1

X2

X4 X3

f = 0

e = 0

X1

Figure 2: Partially stochastic probabilistic relations that cannot be generated by
a quadruplet of ordered lists compared countermonotonically.

In this graph there are four subgraphs with three nodes. Partial stochas-
tic transitivity has to hold for each subgraph. This leads to the following
four conditions:















0 ≤ d − a ≤ max(d, 1 − a) , for triplet (X1, X2, X4)
0 ≤ d − c ≤ max(d, 1 − c) , for triplet (X1, X3, X4)
0 ≤ c − b ≤ max(c, 1 − b) , for triplet (X2, X4, X3)
0 ≤ a − b ≤ max(a, 1 − b) , for triplet (X2, X1, X3)
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which is equivalent to
{

b ≤ c ≤ d ,
b ≤ a ≤ d .

(17)

Note that these conditions can easily be satisfied. We now prove that when
e = 0, f = 0, conditions (17) are fulfilled and

b 6= 0, d 6= 1 , (18)

we obtain a partially stochastic transitive probabilistic relation that cannot
be generated by a quadruplet of ordered lists.

Let us assume that there exists such a quadruplet (X1, X2, X3, X4) of

ordered lists of length n. Let a1 = x
(n)
1 and a2 = x

(n)
2 denote the largest

integer in the ordered lists X1 and X2, respectively. Two cases must be
distinguished. In the first case we have a1 ≥ a2. Since e = 0, the smallest
integer in X3 is strictly greater than a1 and therefore also strictly greater
than a2 from which it follows that b = 0. In the second case we have a1 < a2,
from which, since f = 0, it follows that d = 1. These two cases represent
all possible situations and (18) does not hold in either case. Therefore, there
exist no quadruplets that correspond to the partially stochastic transitive
graph having the following properties:

b ≤ c ≤ d , b ≤ a ≤ d , b 6= 0 , d 6= 1 , e = 0 , f = 0 . (19)

Again, conditions (19) can easily be satisfied. ¤

7 Conclusions

We have studied two extreme ways of comparing ordered lists and established
a common framework for generating from a collection of such lists a proba-
bilistic relation. The dice model has been recognized as a third alternative
for comparing ordered lists, namely the independent comparison method. A
one-to-one relationship between the list comparison methods and the copu-
las that serve to join marginal distributions into a bivariate distribution has
been laid bare. The comparison of the transitivity properties of the prob-
abilistic relations QM, QL and QP, respectively associated to the copulas
TM, TL and TP, proved that QL has the strongest type of transitivity (partial
stochastic transitivity), and that QM has the weakest type of transitivity
(TL-transitivity).

It is our intention to further investigate the relationship between arbi-
trary copulas and list comparison strategies and to study the transitivity
of the generated probabilistic relation. Also, we want to show that the list
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comparison strategies can be generalized for the sake of pairwisely comparing
discrete or continuous random variables with arbitrary distributions. With
regard to the transitivity of the generated probabilistic relation, it is expected
that the relations QM and QL, which resulted from the comparison of or-
dered lists, or equivalently, uniformly distributed discrete random variables,
are representative for the generalized situation as well.
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