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Abstract

The discrete dice model, previously introduced by the present authors, essentially
amounts to the pairwise comparison of a collection of independent discrete random
variables that are uniformly distributed on finite integer multisets. This pairwise
comparison results in a probabilistic relation that exhibits a particular type of
transitivity, called dice-transitivity. In this paper, the discrete dice model is gen-
eralized with the purpose of pairwisely comparing independent discrete or continu-
ous random variables with arbitrary probability distributions. It is shown that the
probabilistic relation generated by a collection of arbitrary independent random
variables is still dice-transitive. Interestingly, this probabilistic relation can be seen
as a graded alternative to the concept of stochastic dominance. Furthermore, when
the marginal distributions of the random variables belong to the same parametric
family of distributions, the probabilistic relation exhibits interesting types of iso-
stochastic transitivity, such as multiplicative transitivity. Finally, the probabilistic
relation generated by a collection of independent normal random variables is proven
to be moderately stochastic transitive.

Key words: Comparison of independent random variables, Cycle-transitivity, Dice
model, Isostochastic transitivity, Probabilistic relation, Stochastic dominance,
T-norm.

1 Introduction

In the discrete dice model, recently introduced and investigated by the present
authors [3], the name dice is reserved to denote a finite multiset of integers,
each face of the dice having equal likelihood of showing up when the corre-
sponding hypothetical material dice is randomly thrown. Furthermore, two

Preprint submitted to Elsevier Science 22 December 2003



dice are compared by considering the winning probability of one dice w.r.t.
the other. More precisely, for any two dice A and B, we define

P (A,B) = Prob{A wins from B} = #{(a, b) ∈ A×B | a > b}
#A#B

,

and

I(A,B) = Prob{A and B end in a tie} = #{(a, b) ∈ A×B | a = b}
#A#B

.

It then holds that

D(A,B) +D(B,A) = 1 ,

with

D(A,B) = P (A,B) +
1

2
I(A,B) .

We say that a relation Q = [qij] is generated by a collection (A1, A2, . . . , Am)
of m dice, if it holds that qij = D(Ai, Aj) for all (i, j). The relation Q is a
probabilistic relation, also called reciprocal or ipsodual relation, and a collec-
tion of dice, together with the probabilistic relation Q it generates, is called
a discrete dice model [3]. Let us recall that a probabilistic relation Q on a
set of alternatives A is a mapping from A2 to [0, 1], such that for all a, b ∈ A
it holds that Q(a, b) + Q(b, a) = 1. In general, probabilistic relations are not
only a convenient tool for expressing the result of the pairwise comparison of
a set of alternatives [1], but they also appear in various fields such as game
theory [5], voting theory [7,12] and psychological studies on preference and
discrimination in (individual or collective) decision making methods [4].

For two dice A and B, it can be stated that A >s B (A statistically wins
from B) if D(A,B) > 1/2, and A =s B (A is statistically indifferent to B) if
D(A,B) = 1/2. One of the main features of a discrete dice model is that its
probabilistic relation can show cyclic behaviour, which means that there exist
A,B,C such that A >s B, B >s C and C >s A.

As an example, consider the three dice A1, A2 and A3 which, instead of the
usual numbers, carry the following integers on their faces:

A1 = {1, 3, 4, 15, 16, 17}, A2 = {2, 10, 11, 12, 13, 14}, A3 = {5, 6, 7, 8, 9, 18} .

Clearly, q12 = 20/36, q23 = 25/36 and q31 = 21/36, whence A1 >s A2, A2 >s A3

and A3 >s A1.
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The occurence of cycles has been observed in various psychological experiments
related to gambling [16], to judgement of relative pitch in music [13] and to
human preferences [14], for instance. Clearly, the possible occurence of cycles
implies that the relation >s derived from the probabilistic relation Q of a dice
model is in general not transitive.

There is yet another way of looking at the dice, namely as discrete random
variables that are uniformly distributed on the finite integer multisets char-
acterizing them. Note that any uniform distribution on an integer multiset
is equivalent to a rational distribution on an integer set. In the probabilistic
sense, a collection (X1, X2, . . . , Xm) of independent discrete random variables,
uniformly distributed on integer multisets, generates a probabilistic relation
Q = [qij], where

qij = Prob{Xi > Xj}+
1

2
Prob{Xi = Xj} . (1)

The purpose of the present paper is to generalize the discrete dice model in
such a way that other random variables than those that are uniformly dis-
tributed on finite integer multisets can be compared pairwisely in terms of
a probabilistic relation. Moreover, we want to investigate the transitivity of
that relation. Already in the case of the discrete dice model [3], the usual
types of transitivity encountered in the context of probabilistic relations, such
as, for instance, various types of stochastic transitivity and various types of
T -transitivity (with T a t-norm), are not suited to describe in an accurate way
the type of transitivity exhibited by the generated probabilistic relation and
a framework is needed for harbouring a broader range of types of transitivity.
The framework that proved to be the best suited is that of cycle-transitivity,
recently established by the present authors [2]. In fact, the probabilistic re-
lation of a discrete dice model exhibits a particular type of cycle-transitivity,
called dice-transitivity [3]. Besides the study of the transitivity exhibited by
the probabilistic relation of generalized dice models, we will also investigate the
transitivity of probabilistic relations that are generated by random variables
with parametric distribution functions. In particular, we will demonstrate that
independent normal random variables generate moderately stochastic transi-
tive probabilistic relations.

The outline of this paper is as follows. In Section 2 we introduce the concept of
a generalized discrete or continuous dice model and show that its probabilistic
relation can be interpreted as a graded alternative to the notion of stochastic
dominance. In Section 3 we briefly review the framework of cycle-transitivity
and the position held therein by dice-transitivity. Section 4 is concerned with
the main theorem of the paper, which characterizes the type of transitivity
exhibited by probabilistic relations of generalized dice models. All remaining
sections are devoted to the study of the influence particular choices of random
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variables have on the transitivity of the generated probabilistic relation. In
Section 5 we focus on random variables with shifted distributions, in Section 6
on random variables with distributions taken from certain parametric families
of distributions, and in Section 7 special attention is paid to the case of normal
random variables.

2 Generalized dice models

Clearly, definition (1) of the probabilistic relation Q of a discrete dice model
can be immediately extended to compare arbitrary random variables. Indeed,
any random vector (X1, X2, . . . , Xm) can, by means of the pairwise comparison
of its components, serve as a source for generating a probabilistic relation.

Proposition 1 For any random vector (X1, X2, . . . , Xm), the relation Q =
[qij] defined by

qij = Prob{Xi > Xj}+
1

2
Prob{Xi = Xj} (2)

is a probabilistic relation.

The definition of Q = [qij] implies that the elements qij can be computed from
the bivariate joint cumulative distribution functions (c.d.f.) FXi,Xj

as follows

qij =
∫

x>y

dFXi,Xj
(x, y) +

1

2

∫

x=y

dFXi,Xj
(x, y) . (3)

Note that one should even not assume that the random variables are indepen-
dent. In this paper, however, we will consider independent random variables
only, and therefore bivariate distributions can always be factorized into uni-
variate marginal distributions. If we want to further simplify (3), it is appro-
priate to distinguish between the following two cases.

Definition 2 Let Xi, i = 1, . . . ,m, be independent discrete random variables,
then the relation Q = [qij] defined by

qij =
∑

k>l

pXi
(k)pXj

(l) +
1

2

∑

k

pXi
(k)pXj

(k) , (4)

with pXi
the marginal probability mass function of Xi, is a probabilistic re-

lation. The discrete random variables together with the probabilistic relation
they generate are called a generalized discrete dice model.
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Definition 3 Let Xi, i = 1, . . . ,m, be independent continuous random vari-
ables, then the relation Q = [qij] defined by

qij =

+∞
∫

−∞

fXi
(x)





x
∫

−∞

fXj
(y) dy



 dx , (5)

with fXi
the marginal probability density function of Xi, is a probabilistic rela-

tion. The continuous random variables together with the probabilistic relation
they generate are called a generalized continuous dice model.

Note that in the transition from the discrete to the continuous case, the sec-
ond contribution to qij in (3) has disappeared in (5), since in the latter case
Prob{Xi = Xj} = 0. Of course, the information contained in the probabilistic
relation is much richer than if for the pairwise comparison of Xi and Xj we
would have used, for instance, only their expected values E[Xi] and E[Xj].

In the discussion of generalized dice models, we will maintain the terminology
related to the original discrete dice model. A collection of dice will be kept as
a metaphore for a collection of independent random variables. Two dice Xi

and Xj, taken from a collection of dice, are compared in terms of the quantity
qij for which it holds that qij = 1− qji. If qij > 1/2, we still say that dice Xi

wins from dice Xj, and if qij = 1/2, we say that both dice are statistically
indifferent.

An alternative concept for comparing two random variables is that of stochas-
tic dominance [8], which is particularly popular in financial mathematics.

Definition 4 A random variable X with c.d.f. FX stochastically dominates
in first degree a random variable Y with c.d.f. FY , denoted as X >1 Y , if for
all real t it holds that FX(t) ≤ FY (t), and the strict inequality holds for at
least one t.

The condition for first degree stochastic dominance is rather severe, as it
requires that the graph of the function FX lies beneath the graph of the func-
tion FY . The need to relax this condition has led to other types of stochastic
dominance, such as second degree and third degree stochastic dominance. We
will not go into more details here, since we just want to emphasize the follow-
ing relationship between first degree stochastic dominance and the winning
probabilities of a dice model.

Proposition 5 For any two independent random variables X and Y it holds
that X >1 Y implies X >s Y .

Proof: We give here the proof for continuous random variables, the proof for
discrete ones being equally simple. Suppose that X >1 Y , i.e. FX(z) ≤ FY (z),
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for any z ∈ R. Since FX and FY are right-continuous functions, it holds that
FX(z) < FY (z), for any z ∈ I ⊆ R, for at least one non-degenerated interval I.
Therefore, we obtain

Prob{X > Y } =
+∞
∫

−∞

fX(x)FY (x)dx >

+∞
∫

−∞

fX(x)FX(x)dx =
1

2
.

The relation >s therefore generalizes first degree stochastic dominance >1.
As the probabilistic relation of a dice model is a graded version of the crisp
relation >s, we can therefore interpret this relation as a graded alternative to
first degree stochastic dominance.

3 Cycle-transitivity

3.1 Definition of cycle-transitivity

In the framework of cycle-transitivity [2], for a probabilistic relation Q = [qij],
the quantities

αijk = min(qij, qjk, qki) , βijk = med(qij, qjk, qki) , γijk = max(qij, qjk, qki) ,

are defined for all (i, j, k). Obviously, αijk ≤ βijk ≤ γijk. Also, the notation
∆ = {(x, y, z) ∈ [0, 1]3 |x ≤ y ≤ z} will be used.

Definition 6 A function U : ∆ → R is called an upper bound function if it
satisfies:

(i) U(0, 0, 1) ≥ 0 and U(0, 1, 1) ≥ 1;
(ii) for any (α, β, γ) ∈ ∆:

U(α, β, γ) + U(1− γ, 1− β, 1− α) ≥ 1 .

The function L : ∆→ R defined by

L(α, β, γ) = 1− U(1− γ, 1− β, 1− α)

is called the dual lower bound function of a given upper bound function U .

6



Definition 7 A probabilistic relation Q = [qij] is called cycle-transitive w.r.t.
an upper bound function U , if for all (i, j, k) it holds that

L(αijk, βijk, γijk) ≤ αijk + βijk + γijk − 1 ≤ U(αijk, βijk, γijk) , (6)

where L is the dual lower bound function of U .

If (6) holds for some (i, j, k), then due to the built-in duality, it also holds
for all permutations of (i, j, k). On the other hand, this duality implies that
it is sufficient to verify only the right-hand inequality (or equivalently, only
the left-hand inequality) for two permutations of (i, j, k) that are not cyclic
permutations of one another, e.g. (i, j, k) and (k, j, i). When the lower bound
function equals the upper bound function, i.e. L(a, b, c) = U(a, b, c) for all
(a, b, c) ∈ ∆ (in which case the inequalities in (6) become equalities), we say
that the function U is self-dual.

Note that a value of U(α, β, γ) equal to 2 will often be used to express that for
the given values there is no restriction at all (indeed, α+ β + γ − 1 is always
bounded by 2). The above definition implies that if a probabilistic relation
Q is cycle-transitive w.r.t. U1 and U1(a, b, c) ≤ U2(a, b, c) for all (a, b, c) ∈ ∆,
then Q is cycle-transitive w.r.t. U2. It is clear that U1 ≤ U2 is not a necessary
condition for the latter implication to hold. Two upper bound functions U1

and U2 will be called equivalent if for any (α, β, γ) ∈ ∆ it holds that

α + β + γ − 1 ≤ U1(α, β, γ)

is equivalent to

α + β + γ − 1 ≤ U2(α, β, γ) .

For instance, suppose that the inequality α + β + γ − 1 ≤ U1(α, β, γ) can be
rewritten as

α ≤ h(β, γ) ,

then an equivalent upper bound function U2 is given by

U2(α, β, γ) = β + γ − 1 + h(β, γ) .

In this way, it is often possible to find an equivalent upper bound function in
only two of the variables α, β and γ.

Cycle-transitivity includes as special cases T -transitivity and all known types
of g-stochastic transitivity.
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Let us recall that a binary operation T : [0, 1]2 → [0, 1] is called a t-norm
if it is increasing, associative, commutative and possesses 1 as neutral ele-
ment [9]. A [0, 1]-valued relation R on a set of alternatives A is called T -
transitive [6] if for any (a, b, c) ∈ A3 it holds that T (R(a, b), R(b, c)) ≤ R(a, c).
The following proposition [2] shows how T -transitivity fits into the frame-
work of cycle-transitivity in case the t-norm T is 1-Lipschitz continuous (for
short, 1-Lipschitz), which means that for all (x, y, z) ∈ [0, 1]3 it holds that
|T (x, y)− T (x, z)| ≤ |y − z|.

Proposition 8 Let T be a 1-Lipschitz t-norm. A probabilistic relation is T -
transitive if and only if it is cycle-transitive w.r.t. the upper bound function
UT defined by

UT (α, β, γ) = α + β − T (α, β) . (7)

Note that 1-Lipschitz t-norms can also be regarded as associative and com-
mutative copulas. Copulas play a predominant role in expressing bivariate
cumulative distribution functions in terms of univariate marginal distribution
functions [11]. The following special cases of 1-Lipschitz t-norms are of par-
ticular interest:

(i) TM(x, y) = min(x, y) with UM(α, β, γ) = β;
(ii) TP(x, y) = xy with UP(α, β, γ) = α + β − αβ;
(iii) TL(x, y) = max(x+ y − 1, 0) with UL(α, β, γ) = min(α + β, 1).

An equivalent upper bound function is given by U ′L(α, β, γ) = 1.

In the literature one finds various types of stochastic transitivity [1,10]. They
can, however, be regarded as special cases of a generic type of stochastic transi-
tivity, which we have called g-stochastic transitivity. Let g be a commutative,
increasing [1/2, 1]2 → [1/2, 1] mapping. A probabilistic relation Q on A is
called g-stochastic transitive if for any (a, b, c) ∈ A3 it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b), Q(b, c)) .

In [2], we have proven the following proposition.

Proposition 9 Let g be a commutative, increasing [1/2, 1]2 → [1/2, 1] map-
ping such that g(1/2, x) ≤ x for any x ∈ [1/2, 1]. A probabilistic relation Q on
A is g-stochastic transitive if and only if it is cycle-transitive w.r.t. the upper
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bound function Ug defined by

Ug(α, β, γ) =



























β + γ − g(β, γ) , if β ≥ 1/2 ∧ α < 1/2 ,

1/2 , if α ≥ 1/2 ,

2 , if β < 1/2 .

(8)

We obtain as special cases (only mentioning the function g):

(i) strong stochastic transitivity: gss(β, γ) = max(β, γ) = γ;
(ii) moderate stochastic transitivity: gms(β, γ) = min(β, γ) = β;
(iii) weak stochastic transitivity: gws(β, γ) = 1/2.

In our study of the probabilistic relations of dice models, a type of transitivity
which can neither be classified as a type of T -transitivity, nor as a type of
g-stochastic transitivity, has proven to play a predominant role and this new
type of transitivity has been called dice-transitivity.

Definition 10 Cycle-transitivity w.r.t. the upper bound function UD defined
by

UD(α, β, γ) = β + γ − βγ , (9)

is called dice-transitivity.

One easily verifies that an equivalent upper bound function for UD is given by

UD(α, β, γ) =











β + γ − βγ , if β ≥ 1/2 ,

2 , if β < 1/2 ,

since for β < 1/2 the inequality α − 1 ≤ −βγ is trivially fulfilled. As it
holds that UP ≤ UD ≤ UL and also Ums ≤ UD (with Ums(α, β, γ) = β +
γ − gms(β, γ) = γ for β ≥ 1/2 and α < 1/2), dice-transitivity can be situ-
ated between TP-transitivity and TL-transitivity, and also between moderate
stochastic transitivity and TL-transitivity.

3.2 Self-dual upper bound functions

As stated above, any upper bound function U that coincides with its corre-
sponding lower bound function L is called a self-dual upper bound function.
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The following proposition yields a way to construct self-dual upper bound
functions [2].

Proposition 11 Let h be a commutative, increasing [1/2, 1]2 → [1/2, 1] map-
ping with neutral element 1/2. It then holds that any ∆ → R function U of
the form

U s
h(α, β, γ) =











β + γ − h(β, γ) , if β ≥ 1/2 ,

α + β − 1 + h(1− β, 1− α) , if β < 1/2 ,
(10)

is a self-dual upper bound function.

One easily verifies that U s
h ≤ Uss (with Uss(α, β, γ) = γ for β ≥ 1/2), and

hence cycle-transitivity w.r.t. U s
h implies strong stochastic transitivity.

Example 12 The upper bound function UM(α, β, γ) = β, which characterizes
TM-transitivity, is a self-dual upper bound function of the form (10) with
h = max. .

Example 13 Another example of a self-dual upper bound function is the
function UE defined by

UE(α, β, γ) = αβ + αγ + βγ − 2αβγ . (11)

Solving α (resp. γ) from the equation α+ β + γ − 1 = αβ + αγ + βγ − 2αβγ
and substituting the solution in the expression for UE(α, β, γ) in case β ≥ 1/2
(resp. β < 1/2), we obtain the equivalent self-dual upper bound function

U ′E(α, β, γ) =























β + γ − βγ

βγ + (1− β)(1− γ)
, if β ≥ 1/2 ,

α + β − 1 + (1− α)(1− β)

αβ + (1− α)(1− β)
, if β < 1/2 ,

(12)

which is of the form (10) with h defined by

h(x, y) =
x y

x y + (1− x)(1− y)
. (13)

.

Note that cycle-transitivity w.r.t. UE of a probabilistic relation Q = [qij] can
also be expressed as

αijk + βijk + γijk − 1 = αijkβijk + αijkγijk + βijkγijk − 2αijkβijkγijk ,
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or, equivalently, as

αijkβijkγijk = (1− αijk)(1− βijk)(1− γijk) .

Cycle-transitivity w.r.t. the upper bound function UE is therefore equivalent
to the concept of multiplicative transitivity recalled below [15]. Note that the
cycle-transitive version is more appropriate as it avoids division by zero.

Definition 14 A probabilistic relation Q = [qij] is called multiplicatively tran-
sitive if for all (i, j, k) it holds that

qik
qki
=
qij
qji

qjk
qkj

. (14)

As self-dual upper bound functions typically turn inequalities into equalities,
the following proposition does not come as a surprise. It shows that cycle-
transitivity w.r.t. an upper bound function of type (10) can be seen as a
variant of g-stochastic transitivity.

Proposition 15 A probabilistic relation Q on A is cycle-transitive w.r.t. a
self-dual upper bound function of type U s

h if and only if for any (a, b, c) ∈ A3

it holds that

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = h(Q(a, b), Q(b, c)) . (15)

The probabilistic relation Q will also be called isostochastic transitive w.r.t. h,
or shortly, h-isostochastic transitive.

In particular, a reciprocal relation Q is TM-transitive if and only if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ Q(a, c) = max(Q(a, b), Q(b, c)) ,

for any (a, b, c) ∈ A3.

Note that the properties imposed on h in Proposition 11 are very close to
the defining properties of t-conorms. Let us recall that a binary operation
S : [0, 1]2 → [0, 1] is a t-conorm if it is increasing, associative, commutative
and possesses 0 as neutral element [9]. Indeed, although associativity is not
explicitly required for h, it follows quite naturally. Consider for instance an
h-isostochastic transitive probabilistic relation Q such that Q(a, b) ≥ 1/2,
Q(b, c) ≥ 1/2 and Q(c, d) ≥ 1/2. It then holds that

Q(a, d) = h(Q(a, b), Q(b, d)) = h(Q(a, b), h(Q(b, c), Q(c, d)))
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and

Q(a, d) = h(Q(a, c), Q(c, d)) = h(h(Q(a, b), Q(b, c)), Q(c, d)) ,

whence at least for the triplet (Q(a, b), Q(b, c), Q(c, d)) the function h is asso-
ciative.

Adding (full) associativity makes h into a t-conorm on [1/2, 1], or after appro-
priate rescaling, into a usual t-conorm on [0, 1].

Proposition 16 If h is an associative, commutative, increasing [1/2, 1]2 →
[1/2, 1] mapping with neutral element 1/2, then the [0, 1]2 → [0, 1] mapping Sh
defined by

Sh(x, y) = 2h
(

1 + x

2
,
1 + y

2

)

− 1

is a t-conorm.

The two examples of self-dual upper bound functions given above fall into
the latter category. For the self-dual upper bound function U ′E in (12), the
associated t-conorm SE is given by

SE(x, y) =
x+ y

1 + xy
, (16)

which is the Hamacher t-conorm SH
2 with parameter value 2 [9].

This t-conorm is a member of the well-known class of strict t-conorms which
are of the form

S(x, y) = g−1(g(x) + g(y)) ,

with g an additive generator, i.e. a strictly increasing and continuous [0, 1]→
[0,+∞] function that satisfies g(0) = 0 (see e.g. [9]).

4 Transitivity of generalized dice models

In previous work [3], we have proven the following remarkable theorem.

Theorem 17 The probabilistic relation of a discrete dice model is dice-trans-
itive.
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In this section, we prove one of the main results of this paper, namely that
the probabilistic relation of any generalized dice model, whether discrete or
continuous, is dice-transitive. More precisely, we proceed in two distinct steps:
firstly, the discrete dice model is generalized to cover the case of arbitrary
discrete random variables, and, secondly, the generalization to arbitrary con-
tinuous random variables is considered.

Theorem 18 The probabilistic relation of a generalized discrete dice model is
dice-transitive.

Proof: First, we want to emphasize that the introduction of negative integers
in the multisets of a discrete dice model does not alter the transitivity. Let
Xk be a random variable of a generalized discrete dice model, and let In with
n > 0 denote the following set of 2n+ 1 integers: In = {i ∈ Z | −n ≤ i ≤ n}.
We now approximate the random variableXk by a random variableX

(n)
k which

takes values in In with rational probabilities only, in such a way that:

p
X

(n)
k

(−n) ∈ Q ∧ 0 ≤ Prob{Xk ≤ −n} − p
X

(n)
k

(−n) < 1

n2
,

p
X

(n)
k

(j) ∈ Q ∧ 0 ≤ Prob{Xk = j} − p
X

(n)
k

(j) <
1

n2
,

∀j ∈ Im \ {−n, n} ,

p
X

(n)
k

(n) = 1−
n−1
∑

i=−n

p
X

(n)
k

(i) .

It is clear that such an approximation always exists, since the set of rationals
Q is dense in the set of reals R. From the above inequalities, it also follows
that

p
X

(n)
k

(n)− Prob{Xk ≥ n} < 2

n
.

Since we can take n as large as we like, the generalized discrete dice model can
be approximated with arbitrary precision by a discrete dice model in which
the dice have a finite number of faces, each face containing one integer, and
the probability of a particular face showing up in a random roll of the dice
being for each face a rational number. Bringing all rational probabilities to
a (least) common denominator, it suffices to duplicate, depending on the nu-
merator values, each face a number of times in order to obtain an equivalent
discrete dice model. The result of all these operations is that any general-
ized discrete dice model can be approximated with arbitrary precision by a
discrete dice model. In particular, the probabilistic relation Q = [qij] of a gen-
eralized discrete dice model can be approximated with arbitrary precision by
the probabilistic relation Q(ε) = [q

(ε)
ij ] of a discrete dice model, where for all
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ε > 0 and all (i, j) it holds that |qij − q
(ε)
ij | < ε. Since all Qε are dice-transitive

and Q = limε→0 Q
(ε), also Q is dice-transitive.

We now execute the second step mentioned before, by considering continuous
dice models.

Theorem 19 The probabilistic relation of a generalized continuous dice model
is dice-transitive.

Proof: Let Xk be a random variable of a generalized continuous dice model
with probability density function fXk

. We partition R into an infinite number
of segments: R = ∪+∞

n=−∞δn, with δn = [nδ, (n + 1)δ[ and arbitrary δ > 0. We
approximate the continuous random variable Xk by a discrete random variable
X

(δ)
k with probability mass function p

(δ)
Xk
:

p
(δ)
Xk
(i) =

(i+1)δ
∫

iδ

fXk
(x) dx , i ∈ Z .

Since δ can be chosen as small as one likes, the generalized continuous dice
model can be approximated with arbitrary precision by a generalized discrete
dice model, and, in particular, its probabilistic relation Q can be (elementwise)
approximated by the dice-transitive probabilistic relation Q(δ) of a generalized
discrete dice model. Since limδ→0 Q

(δ) = Q, and since dice-transitivity is ex-
pressed through inequalities, Q inherits the transitivity of the approximating
relations Q(δ), whence Q is dice-transitive.

To conclude this section, let us reformulate the main result as follows. The
discrete dice model with random variables that are uniformly distributed on
integer multisets, is as far as the transitivity of the generated probabilistic
relation is concerned, a generic model, in the sense that all generalized dice
models generate dice-transitive probabilistic relations.

Of course, if the random variables of a generalized dice model possess distri-
bution functions that obey certain constraints, then it can happen that the
transitivity of the generated probabilistic relation is of a stronger type than
dice-transitivity. In the remaining sections, we will discuss certain of these
constraints and their influence on the type of transitivity.

5 Dice with shifted distributions

As a first example of generalized dice models in which certain constraints are
imposed on the distribution functions of the random variables, we consider the
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case where these random variables possess cumulative distribution functions
that are translated copies of a generic cumulative distribution function FX .
We will investigate the transitivity of the probabilistic relations generated by
such restricted dice models and the notion of isostochastic transitivity will
naturally come to the foreground.

Proposition 20 Let the c.d.f. FXi
of the independent random variables Xi,

i = 1, . . . ,m, of a generalized dice model be arbitrary translations of the same
c.d.f. FX , i.e. FXi

(x) = FX(x − ti) for all i with arbitrary real ti. If for all
u 6= v for which the equality

+∞
∫

−∞

FX(x− u) dFX(x) =

+∞
∫

−∞

FX(x− v) dFX(x) (17)

holds, the integrals are either both 0 or both 1, then the probabilistic relation
generated by the random variables is isostochastic transitive w.r.t. a function
h that solely depends upon the generic c.d.f. FX .

Proof: We can assume without loss of generality that the indices of three
random variables Xi, Xj, Xk are such that qij ≥ 1/2 and qjk ≥ 1/2. The value
of qij is computed as follows

qij =

+∞
∫

−∞

FX(x− tj) dFX(x− ti) =

+∞
∫

−∞

FX(x+ ti − tj) dFX(x) .

Since FX is non-decreasing and the last integral is equal to 1/2 when ti = tj,
it is clear that qij ≥ 1/2 implies ti ≥ tj. Similarly, it holds that

qjk =

+∞
∫

−∞

FX(x+ tj − tk) dFX(x) ,

with tj ≥ tk. Finally,

qik =

+∞
∫

−∞

FX(x+ ti − tk) dFX(x) ,

and since ti − tk = (ti − tj) + (tj − tk), we immediately obtain that

qik ≥ max(qij, qjk) ≥
1

2
. (18)
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Let us first assume that qij 6= 1 and qjk 6= 1. Then, due to (17), the differences
ti − tj and tj − tk are unique, and so is their sum ti − tk. If qij = 1 or qjk = 1,
then, according to (18), also qik = 1. This proves that qik is a function of qij and
qjk on [1/2, 1]

2, which we denote as qik = h(qij, qjk) with h a [1/2, 1]
2 → [1/2, 1]

function solely depending upon FX . It is easy to verify that h is increasing and
has 1/2 as neutral element. For instance, if qij = 1/2 then condition (17) im-
plies that ti = tj, whence qik = h(1/2, qjk) = qjk. Furthermore, h is symmetric
and since qki = 1 − qik ≤ 1/2, we can rewrite, using previously introduced
notations, the functional relationship as 1 − αijk = h(βijk, γijk) if βijk ≥ 1/2,
or equivalently

αijk + βijk + γijk − 1 = βijk + γijk − h(βijk, γijk) if βijk ≥ 1/2 .

Since the above equality holds for all (i, j, k) for which βijk ≥ 1/2, it follows
that the probabilistic relation Q is cycle-transitive w.r.t. the self-dual func-
tion U s

h defined in (10). Hence, according to the terminology introduced in
Proposition 15, the probabilistic relation Q is h-isostochastic transitive.

Note that qij = 1 implies that FX(x+ti−tj) = 1 for all x for which dFX(x) 6= 0.
Hence, qij = 1 implies that x+ti−tj ≥ τu should be satisfied for all x ∈ [τl, τu],
where τl and τu are the lower and upper bounds of the support of dFX , or
equivalently, ti − tj ≥ τu − τl = τ , where τ is the range of this support. This
can therefore only occur if the distribution of X has finite support.

Finally, it must be emphasized that condition (17) is not only a sufficient but
also a necessary condition for the h-isostochastic transitivity. However, in a
continuous dice model, it is sufficient that the distribution of X has either
infinite support or has as finite support a single interval. In a discrete dice
model, it is sufficient that the probability mass function is strictly positive on
a single interval of integers and zero elsewhere.

Example 21 As a first example of a dice model with shifted distributions,
let us consider the case of the exponential distribution with parameter λ, i.e.
FX(x) = 1 − exp(−λx). Let us assume that the translational parameters for
the three random variables Xi, Xj, Xk are such that ti ≥ tj ≥ tk. We compute:

qij = Prob{Xi > Xj} =
+∞
∫

ti

λe−λ(x−ti)[1− e−λ(x−tj)] dx = 1− 1
2
e−λ(ti−tj) ,

from which it follows that exp(−λ(ti − tj)) = 2(1 − qij). Similarly, it holds
that exp(−λ(tj − tk)) = 2(1− qjk). This leads to

qik = 1−
1

2
e−λ(ti−tk) = 1− 1

2
e−λ(ti−tj)e−λ(tj−tk) = 1− 2(1− qij)(1− qjk) .
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Since ti ≥ tj ≥ tk, it holds that qij ≥ 1/2, qjk ≥ 1/2 and qki ≤ 1/2, and the
foregoing expression can be rewritten as

1− αijk = 1− 2(1− βijk)(1− γijk) .

It then follows that Q is isostochastic transitive w.r.t. the function h defined
by

h(x, y) = 1− 2(1− x)(1− y) . (19)

Using Proposition 16, we obtain the associated t-conorm Sh as

Sh(x, y) = x+ y − xy ,

which is the well-known probabilistic sum. .

Example 22 As a second example, we consider the Gumbel distribution
G(µ, η) as the generic distribution for a collection of shifted random vari-
ables. Let us recall that a continuous random variable X on R is said to be
Gumbel-distributed with parameters µ and η, if it holds that:

fX(x) = µe−µ(x−η)e−e
−µ(x−η)

, (20)

for any x ∈ R. The corresponding c.d.f. is then given by

FX(x) = e−e
−µ(x−η)

.

The random variable X has expected value η + C/µ and variance π2/(6µ2),

with C the Euler-Masceroni constant. It is known that if X1
d
= G(µ, η1) and

X2
d
= G(µ, η2) are two independent Gumbel-distributed random variables with

same variance (same µ), then max(X1, X2) is Gumbel-distributed with the
same µ and with parameter η = ln(eµη1 + eµη2)/µ, whereas X1 − X2 is a
random variable that has the logistic distribution, i.e.:

FX1−X2(x) =
1

1 + eµ(η2−η1−x)
. (21)

Let us assume that Xi, Xj, Xk are three random variables with distributions
shifted by ti, tj, tk from the generic Gumbel distribution G(µ, η). Then

qij = 1− FXi−Xj
(0) =

eµ(ηj−ηi)

1 + eµ(ηj−ηi)
=

eµηj

eµηi + eµηj
.
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Using the short notation λi = exp(µ ηi), we obtain

qij = λi

+∞
∫

0

e−(λi+λj)z dz =
λi

λi + λj
,

from which we immediately obtain that qij/qji = λi/λj. Since obviously equal-
ity (14) is satisfied for all (i, j, k), the probabilistic relation Q is multiplica-
tively transitive, or, equivalently, isostochastic transitive w.r.t. the function
h defined in (13). Let us recall that the t-conorm Sh associated to it, is the
Hamacher t-conorm SH

2 with parameter value 2 defined in (16). .

6 Dice models with parametric random variables

6.1 Families considered

Dice-transitivity is the generic type of transitivity shared by the probabilistic
relation generated by a collection of arbitrary discrete or continuous inde-
pendent random variables. Clearly, stronger types of transitivity might be
obtained when one restricts the distributions of the random variables to par-
ticular families of distributions, such as certain standard parametric families.

In particular, we will investigate continuous random variables with probabil-
ity density functions taken from a one-parameter family of density functions.
These families and density functions are listed in Table 1 (the variable param-
eter in all cases being λ, while the other parameters are treated as constants).
In the case of normal distributions, for example, we only consider the one-
parameter subfamily of normal distributions with varying expected value and
constant variance.

6.2 Examples of multiplicative transitivity

6.2.1 Exponentially distributed dice

Let us consider the case of exponentially distributed dice, i.e. Xi
d
= E(λi). It

then holds that

qij =

+∞
∫

0

λie
−λixdx

x
∫

0

λje
−λjydy =

λi
λi + λj

,
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Table 1
Parametric families of continuous distributions.

Name Density function f(x)

Exponential λe−λx λ > 0 x ∈ [0,+∞[

Beta λx(λ−1) λ > 0 x ∈ [0, 1]

Pareto λx−(λ+1) λ > 0 x ∈ [1,+∞[

Gumbel µe−µ(x−λ)e−e
−µ(x−λ)

λ ∈ R, µ > 0 x ∈ ]−∞,+∞[

Uniform 1/a λ ∈ R, a > 0 x ∈ [λ, λ+ a]

Laplace e−|x−λ|/µ)/(2µ) λ ∈ R, µ > 0 x ∈ ]−∞,+∞[

Normal e−(x−λ)2/(2σ2)/
√
2πσ2 λ ∈ R, σ > 0 x ∈ ]−∞,+∞[

and it follows that qij/qji = λi/λj, which shows thatQ is again multiplicatively
transitive.

It is worthwhile to remark that the same transitivity property holds for the
probabilistic relation Q generated by independent discrete random variables

Xi
d
= G(pi) that are geometrically distributed (i.e. pXi

(k) = pi(1− pi)
k−1 , 0 <

pi < 1 , k ≥ 1). Indeed, taking into consideration (4), we compute:

qij =
+∞
∑

k=1

(1− pj)
k−1pj

+∞
∑

l=k+1

(1− pi)
l−1pi +

1

2

+∞
∑

k=1

(1− pi)
k−1(1− pj)

k−1pipj

=
pj(1− pi/2)

pi + pj − pipj
,

and one can easily verify that the equality qijqjkqki = (1− qij)(1− qjk)(1− qki)
again holds. It is, after all, not so surprising that geometric distributions yield
the same type of transitivity as exponential distributions, since the former can
be regarded as a discretization of the latter.

6.2.2 Dice with a power-law distribution

The one-parameter power-law distributions mentioned in Table 1 form a sub-
family of the family of Beta-distributions as well as of the family of Pareto-
distributions, the former ones having finite support, the latter ones having
infinite support. We leave it to the reader to verify that in both cases

qij =
λi

λi + λj
,
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which allows us to conclude that the generated probabilistic relation Q is again
multiplicatively transitive.

6.2.3 Gumbel-distributed dice

In Example 22, we have already introduced the two-parameter family of Gum-

bel distributions. By choosing Xi
d
= G(µ, λi), the distribution of Xi can be

regarded as the generic distribution G(µ, 0) shifted by λi. Hence, the result of
Example 22 immediately applies, namely, the generated probabilistic relation
Q is again multiplicatively transitive.

6.3 Other examples of isostochastic transitivity

Note that the remaining one-parameter families of distributions from Table 1
all concern distributions that for varying λ can be regarded as shifted versions
of a single generic distribution. All these cases could therefore equally well
have been treated before as examples of dice with shifted distributions, and
moreover, we can already state, since the conditions of Proposition 20 are
always fulfilled, that these families of distributions all generate a probabilistic
relation that is h-isostochastic transitive, and hence also strongly stochastic
transitive. It remains to characterize that function h for each of these families.

6.3.1 Dice with a unimodal uniform distribution

Let us consider independent random variables Xi
d
= U [λi, λi + a] and let

us further assume without loss of generality that Xi, Xj, Xk are three such
random variables for which it holds that λi ≥ λj ≥ λk. If λi ≥ λj + a then
qij = 1 and if λj ≤ λi < λj + a, then by straightforward computation we
obtain

qij = 1−
(a+ λj − λi)

2

2a2
.

Note that λi ≥ λj implies that qij ≥ 1/2. Introducing the short notation sij =
max(a+λj−λi, 0), it follows that if λi ≥ λj then qij = 1−s2

ij/(2a
2). Similarly,

since λj ≥ λk, it holds that qjk = 1−s2
jk/(2a

2) and qik = 1−s2
ik/(2a

2). Solving

sij (resp. sjk) in terms of qij (resp. qjk), we find sij = a
√

2(1− qij) (resp.

sjk = a
√

2(1− qjk)). Since furthermore

sik = max((a+ λk − λj) + (a+ λj − λi)− a, 0) = max(sij + sjk − a, 0) ,
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we obtain

qik = 1−
(

max(a
√

2(1− qij) + a
√

2(1− qjk)− a, 0)
)2

2a2
,

which proves that the generated probabilistic relation Q is isostochastic tran-
sitive w.r.t. the function h defined by

h(x, y) = 1− 1
2

(

max(
√

2(1− x) +
√

2(1− y)− 1, 0)
)2

.

The associated t-conorm Sh, given by

Sh(x, y) = 1−
(

max(
√
1− x+

√

1− y − 1, 0)
)2

,

is nothing else but the Schweizer-Sklar t-conorm SSS
1/2 with parameter value

1/2 [9].

6.3.2 Laplace-distributed dice (with constant variance)

LetXi
d
= Lap(λi, µi) be Laplace-distributed random variables with parameters

λi, µi > 0, namely fXi
(x) = exp(−|x − λi|/µi)/(2µi), then a straightforward

computation leads to

qij =























1− 1

2(µ2
i − µ2

j)
[µ2

i e
−(λi−λj)/µi − µ2

je
−(λi−λj)/µj ] , if λi ≥ λj ,

1

2(µ2
i − µ2

j)
[µ2

i e
−(λj−λi)/µi − µ2

je
−(λj−λi)/µj ] , if λi < λj ,

which in the limit µi → µ, µj → µ, reduces to

qij =



















1− 1
2

[

1 + λi−λj
2µ

]

e−(λi−λj)/µ , if λi ≥ λj ,

1
2

[

1 + λj−λi
2µ

]

e−(λj−λi)/µ , if λi < λj .

Let f be the [0,+∞]→ ]0, 1/2] mapping defined by

f(x) =
1

2

(

1 +
x

2

)

e−x ,
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then, if λi ≥ λj ≥ λk, we obtain:

qij = 1− f

(

λi − λj
µ

)

, qjk = 1− f

(

λj − λk
µ

)

, qik = 1− f

(

λi − λk
µ

)

,

with qij ≥ 1/2, qjk ≥ 1/2 and qik ≥ 1/2. Since f is a one-to-one mapping, the
generated probabilistic relation Q is isostochastic transitive w.r.t. the func-
tion h defined by

h(x, y) = 1− f
(

f−1(1− x) + f−1(1− y)
)

.

The associated strict t-conorm Sh is given by

Sh(x, y) = s−1(s(x) + s(y))

with additive generator

s(x) = f−1
(

1− x

2

)

.

6.3.3 Normally distributed dice (with same variance)

We use the notation Φ(x) for the c.d.f. of the standard normal distribution
N(0, 1) with expected value µ = 0 and variance σ2 = 1 (see Table 2). We will
use the following well-known properties:

Φ(−x) = 1− Φ(x) , Φ−1(x) = −Φ−1(1− x) . (22)

Let Xi
d
= N(µi, σ

2
i ), Xj

d
= N(µj, σ

2
j ) and Xk

d
= N(µk, σ

2
k), then, since Xj−Xi

d
=

N(µj − µi, σ
2
i + σ2

j ), we obtain

qij = Prob{Xi > Xj} = Prob{Xj −Xi < 0} = Φ




µi − µj
√

σ2
i + σ2

j



 .

Now let all Xi have the same variance σ
2, and let us without loss of generality

assume that µi ≥ µj ≥ µk, then

qij = Φ

(

µi − µj√
2σ2

)

, qjk = Φ

(

µj − µk√
2σ2

)

, qik = Φ

(

µi − µk√
2σ2

)

,
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and qij ≥ 1/2, qjk ≥ 1/2 and qik ≥ 1/2. Hence,

qik = Φ
(

Φ−1(qij) + Φ
−1(qjk)

)

,

which proves that the probabilistic relation Q is isostochastic transitive w.r.t.
the function h defined by

h(x, y) = Φ
(

Φ−1(x) + Φ−1(y)
)

.

Note that due to (22) an alternative expression for the function h is

h(x, y) = 1− Φ
(

Φ−1(1− x) + Φ−1(1− y)
)

.

The associated strict t-conorm Sh is given by

Sh(x, y) = s−1(s(x) + s(y))

with additive generator

s(x) = Φ−1
(

1− x

2

)

.

An overview of the results obtained in the present section is presented in
Table 2 where for the random variables with parametric distributions defined
in Table 1, we list the function h w.r.t. which the probabilistic relation Q is
isostochastic transitive.

In the cases of the unimodal uniform, Gumbel, Laplace and normal distribu-
tions we have fixed one of the two parameters in order to restrict the family to
a one-parameter subfamily, mainly because with two free parameters, the for-
mulae become utmost cumbersome. The one exception is the two-dimensional
family of normal distributions for which, as we will see in the next section, a lot
of simplifying steps in the computations allow to maintain the two parameters
as free parameters.
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Table 2
h-isostochastic transitivity for the dice models described in Table 1.

Name Function h

Exponential

Beta
x y

x y + (1− x)(1− y)

Pareto associated to t-conorm SH
2

Gumbel (also valid for discrete geometric dice)

Uniform 1− 1
2

(

max(
√

2(1− x) +
√

2(1− y)− 1, 0)
)2

associated to t-conorm SSS
1/2

Laplace 1− f
(

f−1(1− x) + f−1(1− y)
)

with f(x) = 1
2

(

1 + x
2

)

e−x

Normal Φ
(

Φ−1(x) + Φ−1(y)
)

with Φ(x) = (
√
2π)−1

∫ x
−∞ e−t

2/2dt

7 Normally distributed dice

Let us again consider a collection of normally distributed random variables

Xi
d
= N(µi, σ

2
i ). We know from the previous section that

qij = Φ





µi − µj
√

σ2
i + σ2

j



 , qjk = Φ





µj − µk
√

σ2
j + σ2

k



 , qik = Φ





µi − µk
√

σ2
i + σ2

k



 .

Introducing the notation φij =
√

σ2
i + σ2

j , it follows from µi−µk = (µi−µj)+
(µj − µk), that

φikΦ
−1(qik) = φijΦ

−1(qij) + φjkΦ
−1(qjk) ,

an equality which, since φik = φki, can be rewritten as

φijΦ
−1(qij) + φjkΦ

−1(qjk) + φkiΦ
−1(qki) = 0 . (23)
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This formula turns out to be a key element in the proof of the following
proposition.

Proposition 23 The probabilistic relation generated by a collection of inde-
pendent normal random variables is moderately stochastic transitive.

Proof: Let us consider the case qij ≥ 1/2 and qjk ≥ 1/2. It then follows that
µi ≥ µj ≥ µk, with as a consequence that also qik ≥ 1/2. This means that
γijk ≥ βijk ≥ 1/2 and αijk = qki. We have to prove that 1 − αijk = qik ≥
min(βijk, γijk) = min(qij, qjk). Since Φ

−1 is a strictly increasing function, this
is equivalent to proving that the inequality Φ−1(qik) ≥ min(Φ−1(qij),Φ

−1(qjk))
is fulfilled. Using (23), we obtain that

Φ−1(qik) =
φij
φik
Φ−1(qij) +

φjk
φik
Φ−1(qjk)

≥ φij + φjk
φik

min
(

Φ−1(qij),Φ
−1(qjk)

)

.

From the definition of φij, it follows that φij > 0 and furthermore it can be
shown that |φ2

jk − φ2
ij| ≤ φ2

ik ≤ φ2
ij + φ2

jk, which implies that the numbers
φ2
ik, φ

2
ij, and φ

2
jk are triangular numbers, since they satisfy the classical trian-

gular conditions. From the rightmost inequality of this double inequality, we
derive that

φij + φjk =
√

φ2
ij + φ2

jk + 2φijφjk ≥
√

φ2
ij + φ2

jk ≥ φik ,

which completes the proof.

8 Conclusion

In this paper, we have introduced generalized dice models for comparing pair-
wise independent random variables with arbitrary discrete or continuous dis-
tributions. The probabilistic relation generated by the random variables can
be seen as a graded generalization of the concept of stochastic dominance. It is
well known that, in general, probabilistic relations can show cyclic behaviour
and are therefore not transitive. The framework of cycle-transitivity is well
suited for investigating such relations, since cycle-transitivity does not exclude
cyclic behaviour. In our study of the transitivity properties of generalized dice
models, we have highlighted the special role of dice-transitivity and self-dual
upper bound functions. Finally, we have investigated the transitivity of some
specific dice models and have laid bare interesting links with t-conorms and
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stochastic transitivity. The transitivity properties of generalized dice models
with dependent random variables will be investigated in upcoming work.
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